Image Enhancement

3D Image Processing
Torsten Moller
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Overview

e \What is an image”
— quantization
— color image
— iImage pixels
e Quality
® [ntensity transforms
e Histogram processing
e Filtering
e Smoothing
e Sharpening
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What is a (digital) image?

e An image is made of pixels (=picture
elements)

e the coordinate values are discretized
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lmage resolution

¢ the resolution of an image is the number

of pixels per space unit

resolution too low: the image
appears “pixelized”
enlargement needed (e.g. TV to
HDTV conversion)

© Laurent Condat / Torsten Moller
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“pixelization” can be
used for censorship



Quantization

* [he pixel values are quantized: they lbelong
to a discrete set of values, generally
represented by integers between O and N-1

coded on 8 bits coded on 4 bits coded on 2 bits
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Quantization

* [he pixel values are quantized: they lbelong
to a discrete set of values, generally
represented by integers between O and N-1

coded on 8 bits coded on 4 bits coded on 2 bits
255 possible val. 4 possible val.
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Quantization

* [he pixel values are quantized: they belong
to a discrete set of values, generally

represented by integers between O and N-1
e

0 255
8 bits are enough (if no further
processing, like histogram
equalization) because humans do
not see smaller intensity
differences.

© Laurent Condat / Torsten Moller

coded on 8 bits
255 possible val.



What is a color image?

red channel % green channel I¢ blue channel I5

Equivalently, each pixel value I[k] € R? has tree components,
each generally coded on 8 bits — 24 bits/pixel
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Representing an image

e 3 equivalent representations of the same image:

161 | 56 | 201 ®
0 |145 | 46 ® ®
255 | 56 | 201
O @

e A greyscale image is a two-dimensional array of real
values. It can be viewed as a matrix, for instance.

e |f the resolution is high,
we get the impression
that the image is defined
continuously:

We don’t see the pixels.

http://jaredjared.com/2012/10/visual-acuity-dpi/
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Indexing the pixels

An image is made of rows and columns

Usual way of indexing the pixel values:

Ik, k,] is the pixel value of the image I at location (k,, k),
with1 <k, <Wand1 <k, <H.

W is the width and H is the height.

horizontal axis j

In matrix notations (e.g. in Matlab):
. row-first indexing
Ilky, ke

vertical axis

first pixel I[1, 1]
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2D lattices

e An image is defined on a lattice.

¢ The most common is the Cartesian (a.k.a square)
lattice.

e But other lattices exist and have interesting
properties.

%
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cartesian lattice hexagonal lattice
l | 1)
I
e

Given two independent vectors rq, ro, the associated 2D lattice is the set of points ir
the plane, whose coordinates are linear combinations with integer weights of rq, rs.

The pixel shape is the Voronoi cell of the lattice.
© Laurent Condat / Torsten Moller 12



The hexagonal lattice

e petter isotropy:
12-symmetry,
o-connectivity
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Grey level profile (cut)

* \iewing the pixel values along one row of
an image
--> Matlab command improfile

200 W
100

© Laurent Condat / Torsten Moller
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Overview

e Quality

® [ntensity transforms

e Histogram processing
e Filtering

e Smoothing

e Sharpening
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Image quality

e Common defaults in images:
— blur (motion blur, out of focus blur ...)

© Laurent Condat / Torsten Moller
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Image quality

e Common defaults in images:
— blur (motion blur, out of focus blur ...)
— ringing

© Laurent Condat / Torsten Moller
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Image quality

e Common defaults in images:
— blur (motion blur, out of focus blur ...)
— ringing
— aliasing (staircasing, Moiré patterns)
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Image quality

e | ow-frequency Moiré artifacts appear
when high-frequency content is sampled
IN an incorrect way.
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Image quality

¢ \Ve need to be able to measure the difference
between two images, for instance an original image
and a degraded one.

e Classical difference measures between two images |4
and |o:
mean absolute error: MAE = —— Zgzl ZkHy:1 [ [y, ky| — Do[ks, Ky

mean square error: MSE = - Zgzl ZkHyzl (I1]ks, ky] — o[k, ky])z

2552
peak signal to noise ratio (dB): PSNR = 101log;, (MSE)

¢ [here exist much more sophisticated quality measures
and difference measures for images (SSIM...)
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Overview

® [ntensity transforms
e Histogram processing
e Filtering

e Smoothing

e Sharpening
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Image enhancement

e Objective: process an image so that the

image

al domain: manipulati

result Is more suitable than the original
for a specific applica
® [N spati
oixel values.

lon.
lon of the

¢ |n Fourier domain: manipulation of the

frequency content.

© Laurent Condat / Torsten Moller
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Image enhancement

e Objective: process an image so that the result is
more suitable than the original image for a specific
application.

¢ |n spatial domain: manipulation of the pixel values.

— Example: taking the image negative 255-

— we are more sensitive to low contrast in bright regions
than in dark regions.

© Laurent Condat / Torsten Moller 24



Image enhancement

e Objective: process an image so that the result is
more suitable than the original image for a specific
application.

¢ |n spatial domain: manipulation of the pixel values.
— Example: thresholding the pixel values
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Image enhancement

¢ |[ntensity Transformations
— Image negatives
— log transforms
— gamma (power-law) transforms
— contrast stretching
— Intensity-level slicing
— bit-plane slicing

© Torsten Moller
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Output intensity level, s

3L/4

L2

L/4

Log transform

Negative

Log

nth root

nth power

Inverse log

Idei/
|

|

L/4

Lp

Input intensity level, r

3L/4
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FIGURE 3.5

(a) Fourier
spectrum.

(b) Result of
applying the log
transformation in
Eq. (3.2-2) with

c =1
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Output intensity level, s

3L/4

L/2

L/4

Gamma (power-law) transform

/I//i—- { 7
v.=0.04
v =0.10
— v =0.20 H
v =0.40
v = 0.67
y=1 B
y=15
y=25

I vy=35.0 ]

v =10.0
y =250

| __/

0 L/4 L/2 3L/4 L—-1

Input intensity level, r
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FIGURE 3.8

(a) Magnetic
resonance

image (MRI) of a
fractured human
spine.

(b)—(d) Results of
applying the
transformation in
Eq. (3.2-3) with

¢ =1and

v = 0.6, 0.4, and
0.3, respectively.
(Original image
courtesy of Dr.
David R. Pickens,
Department of
Radiology and
Radiological
Sciences,
Vanderbilt
University
Medical Center.)
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Output intensity level, s

3L/4

L/2

L/4

Gamma (power-law) transform

[
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FIGURE 3.9
EERLS (a) Aerial image.
r - (b)— (d) Results of

i~

Input intensity level, r

/ ‘-‘ transformation in
5 Eq. (3.2-3) with
¢ = 1land

v = 3.0,4.0,and
5.0, respectively.
(Original image
for this example
courtesy of
NASA.)

© Torsten Moller 29



Contrast stretch

% (2, 52)
3 3L -
2
E Lk ~71()
E
B LpR- -
5 (rlvsl)

0 1 | |

0 L/4 L/2 3L/A L-1

Input intensity level, r
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FIGURE 3.10
Contrast stretching.
(a) Form of
transformation
function. (b) A
low-contrast image.
(c) Result of
contrast stretching.
(d) Result of
thresholding.
(Original image
courtesy of Dr.
Roger Heady,
Research School of
Biological Sciences,
Australian National
University,
Canberra,
Australia.)
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Intensity-level slicing

ab R , L-1

FIGURE 3.11 (a) This
transformation
highlights intensity
range [A, B] and
reduces all other
intensities to a lower
level. (b) This
transformation
highlights range

[A, B] and preserves
all other intensity
levels.

abc

FIGURE 3.12 (a) Aortic angiogram. (b) Result of using a slicing transformation of the type illustrated in Fig.
3.11(a), with the range of intensities of interest selected in the upper end of the gray scale. (c) Result of
using the transformation in Fig. 3.11(b), with the selected area set to black, so that grays in the area of the
blood vessels and kidneys were preserved. (Original image courtesy of Dr. Thomas R. Gest, University of
Michigan Medical School.)
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One 8-bit byte 7 Bit plane 8
(most significant)

\K\

Bit-plane slicing

Bit plane 1
(least significant)
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FIGURE 3.14 (a) An 8-bit gray-scale image of size 500 X 1192 pixels. (b) through (i) Bit planes 1 through 8,
with bit plane 1 corresponding to the least significant bit. Each bit plane is a binary image.
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Bit-plane slicing
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FIGURE 3.15 Images reconstructed using (a) bit planes 8 and 7; (b) bit planes 8, 7, and 6; and (c) bit planes 8,
7,6, and 5. Compare (c¢) with Fig.3.14(a).
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Overview

e Histogram processing
e Filtering

e Smoothing

e Sharpening

© Torsten Moller
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Histogram of an image

* [he histogram of an image represents the
number of pixels having a given gray value.

¢ \Ve see three zones of repartition:
dark, intermediate, and bright.

7

'.~ 1000 |
ks ! Matlab
& % command |

imhist

I
E

50

 © Laurent Condat / Torsten Méller
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Histogram of an image

* [he histogram of an image represents the
number of pixels having a given gray value.

¢ \/\Ve see a uniform repartition, except the
central peak.

1500

Matlab

command |
1mhist

=l

0

0

« W © Laurent Condat / Torsten Maller 36



Histogram of an image

* [he histogram of an image represents the
number of pixels having a given gray value.

e Although the image seems to be black, we
see that there are a few gray values

10000 .

Matlab 8000y
command sl
1mhist

IS5

4000 ¢

2000 |

—_—

0 50 100 150 200 250
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Histogram of an image

® [he histogram does not convey any
spatial information.

original image - after threéholding after Floyd—
(Michelangelo’s David) Steinberg dithering

© Laurent Condat / Torsten Moller 38



Enhancement by histogram
modification

darker image

0 50 100 150 200 250
© Laurent Condat / Torsten Moller



Histogram modification

¢ | inear rescaling
of the range. The
distance between
the peaks
remains constant.

";"' b,
higher contrast

5000 5000
4500 4500
40001 4000
3500 3500
3000 3000
25001 2500
2000} 200
1500 50
1000 00
so0 o0 ‘
; L :

1 1 1
50 100 150 200 250 0 50 100 150 200
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Histogram equalization

e Non-linear rescaling
of the range.
The distance
between the peaks
IS proportional to

their heights. -
higher contrast
Matlab o I j
command = I j
histeq o I e F

© Laurent Condat / Torsten Moller 41



Histogram equalization

¢ |dea -- stretch histogram non-uniformally
such that final histogram is a uniform
distribution

po(s) = o) |

s=1T(r)= / pr(w)dw A I
0 | -

ab

FIGURE318 ( )A b y PDF. (b) R ult of a p1] the transformution in

Eq (3.3-4) tc I rels, r. The mg] Ileh. s.lm uniform PDF,
independer 1 t h t of the PDF t h

© Torsten Moller
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Histogram equalization

¢ theory developed for continuous
histogram, reality deal with discrete
apPProx.

Prri) Sk Ps(Sk)
A 4
25 i . 7.0 4 25 1+ . °
: < I A4 1 | o
15+ | ’ 42 + 15+ E
10 | o 28 T | 10+ | i i ’
| l I ® ‘ i < | i E
05 + | | : i s 1.4 | 05 : |
4 ——1— ?; Fi — —t—t > F'g | f ! S S ———
0O 1 2 3 4 5 6 7 0O 1 2 4 5 6 7 0O 1 2 3 4 5 6 17

abc

FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original
histogram. (b) Transformation function. (c¢) Equalized histogram.
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Histogram equalization

il
s
il

FIGURE 3.20 Left column: images from Fig. 3.16. Center column: corresponding histogram-
equalized images. Right column: histograms of the images in the center column.
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255

192

128

64

Histogram matching

192

© Torsten Moller

FIGURE 3.21
Transformation
functions for
histogram
equalization.
Transformations
(1) through (4)
were obtained from
the histograms of
the images (from
top to bottom) in
the left column of
Fig. 3.20 using
Eq. (3.3-8).
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Histogram matching

¢ |dea -- match the histogram to arbitrary
function, Instead of the constant function

=G = [ pa(w)du

s="1T(r)= /0 pr(w)dw
z =G HT(r)] =G (s)

© Torsten Moller 46



Histogram matching
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FIGURE 3.22

(a) Histogram of a
3-bit image. (b)
Specified
histogram.

(c) Transformation
function obtained
from the specified
histogram.

(d) Result of
performing
histogram
specification.
Compare

(b) and (d).
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Histogram matching

g
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Local histogram equalization

abc

FIGURE 3.26 (a) Original image. (b) Result of global histogram equalization. (¢) Result of local
histogram equalization applied to (a), using a neighborhood of size 3 X 3.
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Local histogram equalization

abc

FIGURE 3.27 (a) SEM image of a tungsten filament magnified approximately 130X.
(b) Result of global histogram equalization. (c) Image enhanced using local histogram
statistics. (Original image courtesy of Mr. Michael Shaffer, Department of Geological
Sciences, University of Oregon, Eugene.)

© Torsten Moller
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e Filtering
e Smoothing
e Sharpening

Overview

© Torsten Moller
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echanics of filtering

:'I\mnge origin

1~

Filter mas|
Nl
£
Image pixels —/

w(—1,0)

Image

- -—

w(©0,-1) | w©0,0) | w(.1)

w(l,-1) w(1,0)

w(l,1)

fe—1,y—1) fa—1y+1) Filter coefficients

fly=1)

fle,y+1)

fx+1Ly-1) f(x+1y) |[fx+Ly+1)

Pixels of image

section under filter

FIGURE 3.28 The mechanics of linear spatial filtering using a 3 X 3 filter mask. The form chosen to denote
the coordinates of the filter mask coefficients simplifies writing expressions for linear filtering.
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Mechanics of filtering

Correlation:
w(z,y) * flx,y) = ZZwst (x + s,y + 1)
S=—a t=—b
Convolutlon
w(z,y) * ZZwst flr — s,y —t)
S=—at=-—b
w(0,0)
© Torsten Moller .| Filter coefficients 53




Correlation vs. Convolution

Correlation Convolution
,— Origin I w ,— Origin f w rotated 180°
(a) 00O 1TO0O0O00O 12328 00010000O0 82321 (i)
Y
(b) 000100O0O0 000O100O0O0 (j)
12328 82321
t Starting position alignment
ﬁ Zero padding !
— —
(¢ 0O0O0ODO0O0O0OO0O1TO0OO0OO0ODO0ODOCOODO 00000001 0000O0O0O0O0 (k
12328 82321
(doOOOOOOO1TOO0OOOOO0ODOO 00000001 O0O0OO0OO0OOOO0 @M
12328 82321
L Position after one shift
(e 0OODOOOOT1TOOO0OODOOOO 000O0000O1TO0O0O0OOO0OO0OOOO0OO0O (m)
12328 8 2321
b Position after four shifts
f) 0000O0O0O0DO0D1TO0ODODO0DOCOO0OO 00000001 000O0O0DO0OO0OO0 (n
12328 8 2321
Final position 4
Full correlation result Full convolution result
(g) 000823210000 000123280000 (0)
Cropped correlation result Cropped convolution result
(h) 08232100 01232800 (p)

FIGURE 3.29 Illustration of 1-D correlation and convolution of a filter with a discrete unit impulse. Note that
correlation and convolution are functions of displacement.



2D version

Padded f
0O0O0OO0OO0OO0OOTO0OO O

[‘Ol'igi“ f(x,y) O 0 00 O0O0OO0O0O0

0O 0 0 0 0 0O 00O O0O1TO0UO0O0O0

0O 0 0 0 0 w(x,y) 0O 0 00 O0O0UO0OO0O0

0O 01 0 0 1 23 000O0O0O0O0O0O0

0O 0 0 0 0O 4 5 6 O 0 0O 0 00 O0O00O0

0O 0 0 0 0 7 8 9 0000 O0O0OO0O0O0O

(a) (b)

_T_Ifi_tial position for w Full correlation result Cropped correlation result
:1 2 3: 0O 0 0 0 0 0 O 0 0O 0 0 0 0 00 0O 0 0 0 0
4 5 6,0 00000 O0O0O0O0OO0OO0OCO0DCODCODO 09870
:Z_§_9_: O 0 0 0 00 00 O0OO0OO0OO0ODO0DO0DO0D OG6S5 40
O 0 0 0 0 0 O 0 0 0O 0 0 98 7 0 0 0 0O 3 2 1 0
0O 0 0 010 000 0O 0 0O 6 5 4 0 0 0 O 0 0 0 0
O 0 0 0 0 0 O 0 0 0O 0 0 3 21 000

OO0 0000O0OO0OO0D OO0ODOOOOODOO O

OO0 000O0O0OO0OO0O OO0OOOOODOOD OO O

OO0 000 0O0OO0OO0 OO0OO0OOO0OODOO0OO 0

(c) (d) (e)
'S Rotated w Full convolution result Cropped convolution result
:§_§_7_: 000000 00O0O0DOODOOODO O0O0OOOO
6 5 40 00000 OO0O0OO0O0O0OO0ODO0ODODODODO O1230
:;_%_1_: 0O 0 0 0O 0 0 O 0 O 0 0 O 0 0 0O 0 4 5 6 0
O00O0OO0OO0DODO0OOD OODOI1IZ23000 O17U890
O 0 0 01T 0 O 0 0 O 0 0O 4 5 6 0 0 0O O 0 0 O 0O
7 9

0O 0 0 0 0 0 O 0 0 0O 0 0O
0O 0 0 0O
0O 0 0 0 0 0 O 0 0 O 0 0 0 0 0 0 0 0O
0O 0 0 0 0 0 O 0 0 O 0 0 0 0 0 0 0 0

(f) (8) (h)



e Smoothing
e Sharpening

Overview

© Torsten Moller
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Smoothing linear filters

ab

FIGURE 3.32 'Two
3 X 3 smoothing
(averaging) filter
masks. The

1 constant multipli-
16 | er in front of each
mask is equal to 1

divided by the
sum of the values
of its coefficients,

as is required to
compute an
average.

© Torsten Moller



Smoothing linear filters

FIGURE 3.33 (a) Original image, of size 500 x 500 pixels. (b)~(f) Results of smoothing
with square averaging filter masks of sizes m = 3,5,9,15, and 35, respectively. The black
squares at the top are of sizes 3,5,9, 15,25, 35,45, and 55 pixels, respectively; their borders
are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in
increments of 2 points; the large letter at the top is 60 points. The vertical bars are 5 pixels
wide and 100 pixels high; their separation is 20 pixels. The diameter of the circles is 25
pixels, and their borders are 15 pixels apart; their mtensnv levels range from 0% to 100%
black in increments of 20%. The background of the image is 10% black. The noisy
rectangles are of size 50 X 120 pixels.

© Torsten Moller
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Smoothing non-linear filters

abc

FIGURE 3.34 (a) Image of size 528 X 485 pixels from the Hubble Space Telescope. (b) Image filtered with a
15 X 15 averaging mask. (c¢) Result of thresholding (b). (Original image courtesy of NASA.)

© Torsten Moller
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Median filtering (denoising

ity

abec

FIGURE 3.35 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with
a 3 X 3 averaging mask. (c) Noise reduction with a 3 X 3 median filter. (Original image courtesy of Mr.
Joseph E. Pascente, Lixi, Inc.)
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e Sharpening

Overview

© Torsten Moller
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Principle idea

e cnhance / highlight transition in intensity

e how to find “transition”?
— unsharp masking / highboost filtering
— first / second order derivatives in 1D

— multi-D:
¢ gradient magnitude
¢ | aplacian

© Torsten Moller
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Unsharp Masking /
Highboost Filtering

e Blur image

e Substract blurred image
from original (--> mask)

gmask(aj7y) — f(il?,y) - f(il?,y)
e add mask to original

g(z,y) = f(@,y) + k- Gmask (@, y)
e unsharp masking: k=1
® highboost filtering: k>1

© Torsten Moller




Unsharp Masking /
Highboost Filtering

e Blur image

e Substract blurred image
from original (--> mask)

Jmask(T,y) = f(z,y) — f(2,y)
e add mask to original
g(z,y) = f(z,y) + k- gmask(z,y)
e unsharp masking: k=1
® highboost filtering: k>1

© Torsten Moller

DIP-X

DIP-X
BIRP=XE
DIP-X
DIP-X

a
b
c
d
e

FIGURE 3.40

(a) Original
image.

(b) Result of
blurring with a
Gaussian filter.
(c) Unsharp
mask. (d) Result
of using unsharp
masking.

(e) Result of
using highboost
filtering.
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Scan
line

1st/2nd derivative - 1D example

tensity transition
Ve Intensity t

Intensity

Ist derivative
2nd derivative

Intensity

6 —m —=m— @ a— = ==
5 _\-Constant " /
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41— LN Ramp Step N\ ,/
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N I
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a
b
C

FIGURE 3.36
Illustration of the
first and second
derivatives of a
1-D digital
function
representing a
section of a
horizontal
intensity profile
from an image. In
(a) and (c) data
points are joined
by dashed lines as
a visualization aid.
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Multiple dimensions
0*f  O°f
ox2  Oy2

e Laplacian Af = V*f =
e Approximation:

0
O = fat L)+ S 19) 2y

0 1 0 1 1 1 c d

FIGURE 3.37

(a) Filter mask used
to implement

Eq. (3.6-6).

(b) Mask used to
implement an
extension of this
equation that

0 -1 0 -1 -1 -1 includes the
diagonal terms.

(c) “md d) Two

-1 4 -1 -1 8 -1 other 1mplement a-
tions of the
Laplacian found

0 -1 0 _1 1 1 frequently in
practice. 66
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FIGURE 3.38

(a) Blurred image
of the North Pole
of the moon.

(b) Laplacian
without scaling.
(c) Laplacian with
scaling. (d) Image
sharpened using
the mask in Fig.
3.37(a). (e) Result
of using the mask
in Fig. 3.37(b).
(Original image
courtesy of

NASA.)
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Gradient magnitude

M(z,y) = mag(V [f) = \/(
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FIGURE 3.42

(a) Optical image
of contact lens
(note defects on
the boundary at 4
and 5 o’clock).
(b) Sobel
gradient.
(Original image
courtesy of Pete
Sites, Perceptics
Corporation.)
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