Multiresolution and wavelets

3D Image Processing
 Alireza Ghane

Readings

- The Gonzales + Woods, Chapter 7

Overview

- Background
- image pyramids
- subband coding
- Haar
- Multiresolution expansions
- Wavelet transform in 1D
- Fast wavelet transform
- Wavelet transform in 2D
- Wavelet packets

Image pyramids

- sequence of same image of decreasing resolution

© Möller

Important operators

- $2 \downarrow$ - Downsampling:

$$
f_{2 \downarrow}(n)=f(2 n)
$$

- $2 \uparrow$ - Upsampling:

$$
f_{2 \uparrow}(n)= \begin{cases}f(n / 2) & \text { if } n \text { is even } \\ 0 & \text { otherwise }\end{cases}
$$

Image pyramids

- can be build recursively

Image pyramids

- can be build recursively

Image pyramids

- can be build recursively

Image pyramids

- can be build recursively

Image pyramids

- can be build recursively

Image pyramids

- can be build recursively
- approximate level j-1 from level j
- filter, then
- downsample (by a factor of 2)
- compute an estimate of level j from level j-1
- upsample, then
- filter
- compute difference between level j and its estimation

Image pyramids

FIGURE 7.3

Two image pyramids and their histograms:
(a) an
approximation pyramid;
(b) a prediction residual pyramid.

Image pyramids

FIGURE 7.3

Two image
pyramids and their histograms:
(a) an
approximation pyramid;
(b) a prediction
residual pyramid.

Image pyramids

FIGURE 7.3

Two image
pyramids and their histograms:
(a) an
approximation pyramid;
(b) a prediction
residual pyramid.

Image pyramids

a
FIGURE 7.3
Two image
pyramids and their histograms:
(a) an
approximation pyramid;
(b) a prediction
residual pyramid.

Image pyramids

FIGURE 7.3
Two image pyramids and their histograms:
(a) an
approximation pyramid;
(b) a prediction
residual pyramid.

Image pyramids

FIGURE 7.3

Two image pyramids and their histograms:
(a) an
approximation pyramid;
(b) a prediction residual pyramid.

Subband coding

- in image is decomposed into a set of bandlimited components
- try to keep all information to reassemble image from its components

Subband coding

Subband coding

- building 'perfect reconstruction filter banks':

$$
\begin{aligned}
& g_{0}(n)=(-1)^{n} h_{1}(n) \\
& g_{1}(n)=(-1)^{n+1} h_{0}(n)
\end{aligned} \quad \text { or } \quad \begin{aligned}
& g_{0}(n)=(-1)^{n+1} h_{1}(1 \\
& g_{1}(n)=(-1)^{n} h_{0}(n)
\end{aligned}
$$

Subband coding

- building 'perfect reconstruction filter banks':
$g_{0}(n)=(-1)^{n} h_{1}(n)$
$g_{1}(n)=(-1)^{n+1} h_{0}(n) \quad$ Or $\quad g_{1}(n)=(-1)^{n} h_{0}(n)$
- fulfills biorthogonality:

$$
\left\langle h_{i}(2 n-k), g_{j}(k)\right\rangle=\delta(i-j) \delta(n)
$$

- desire also orthonormality:

$$
\left\langle g_{i}(n), g_{j}(n+2 m)\right\rangle=\delta(i-j) \delta(m)
$$

Subband coding

- orthonomality requires:

$$
\begin{aligned}
& g_{1}(n)=(-1)^{n} g_{0}\left(K_{\text {even }}-1-n\right) \\
& h_{i}(n)=g_{i}\left(K_{\text {even }}-1-n\right)
\end{aligned}
$$

Subband coding in 2D

- doing things first by row and then by column

FIGURE 7.7
A two-
dimensional, fourband filter bank for subband image coding.

FIGURE 7.8

The impulse responses of four 8-tap Daubechies

Example

 orthonormal filters. SeeTable 7.1 for the values of $g_{0}(n)$ for $0 \leq n \leq 7$.

\boldsymbol{n}	$\boldsymbol{g}_{\mathbf{0}}(\boldsymbol{n})$
0	0.23037781
1	0.71484657
2	0.63088076
3	-0.02798376
4	-0.18703481
5	0.03084138
6	0.03288301
7	-0.01059740

TABLE 7.1

Daubechies 8-tap orthonormal filter coefficients for $g_{0}(n)$ (Daubechies [1992]).

Example

a b
FIGURE 7.9
A four-band split of the vase in Fig. 7.1 using the subband coding system of Fig. 7.7. The four subbands that result are the
(a) approximation,
(b) horizontal
detail, (c) vertical detail, and
(d) diagonal detail subbands.

Haar

- perhaps the oldest transform (1910)
- certainly the most simplest

$$
\begin{gathered}
H_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right] \\
H_{4}=\frac{1}{2}\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
\sqrt{2} & -\sqrt{2} & 0 & 0 \\
0 & 0 & \sqrt{2} & -\sqrt{2}
\end{array}\right]
\end{gathered}
$$

Haar transform example

FIGURE 7.10

(a) A discrete wavelet transform using Haar \mathbf{H}_{2} basis functions. Its local histogram variations are also shown. (b)-(d) Several different approximations $(64 \times 64$, 128×128, and 256×256) that can be obtained from (a).

Overview

- Background
- image pyramids
- subband coding
- Haar
- Multiresolution expansions
- Wavelet transform in 1D
- Fast wavelet transform
- Wavelet transform in 2D
- Wavelet packets

Overview

- Background
- Multiresolution expansions
- understanding spaces
- scaling functions
- wavelet functions
- Wavelet transform in 1D
- Fast wavelet transform
- Wavelet transform in 2D
- Wavelet packets

What is sampling?

Sampling: step by step

© Torsten Möller

Sampling: step by step

Sampling: step by step

$$
\left(\int_{-\infty}^{\infty} f(t) \delta\left(t-t_{0}\right) d t\right) \delta\left(t-t_{0}\right)
$$

$f(t)=$

Sampling: step by step

$$
\begin{aligned}
& \left(\int_{-\infty}^{\infty} f(t) \delta\left(t-t_{0}\right) d t\right) \delta\left(t-t_{0}\right) \\
& \left(\int_{-\infty}^{\infty} f(t) \delta\left(t-\left(t_{0}+\Delta T\right)\right) d t\right) \delta\left(t-\left(t_{0}+\Delta T\right)\right)
\end{aligned}
$$

© Torsten Möller

Sampling: step by step

$$
\begin{aligned}
& \left(\int_{-\infty}^{\infty} f(t) \delta\left(t-t_{0}\right) d t\right) \delta\left(t-t_{0}\right) \\
& + \\
& \left(\int_{-\infty}^{\infty} f(t) \delta\left(t-\left(t_{0}+\Delta T\right)\right) d t\right) \delta\left(t-\left(t_{0}+\Delta T\right)\right) \\
& f(t)= \\
& \left(\int_{-\infty}^{\infty} f(t) \delta\left(t-\left(t_{0}+2 \Delta T\right)\right) d t\right) \delta\left(t-\left(t_{0}+2 \Delta T\right)\right)
\end{aligned}
$$

Sampling: step by step

$$
\begin{aligned}
& \left(\int_{-\infty}^{\infty} f(t) \delta\left(t-t_{0}\right) d t\right) \delta\left(t-t_{0}\right) \\
f(t)= & \left(\int_{-\infty}^{\infty} f(t) \delta\left(t-\left(t_{0}+\Delta T\right)\right) d t\right) \delta\left(t-\left(t_{0}+\Delta T\right)\right) \\
& \left(\int_{-\infty}^{\infty} f(t) \delta\left(t-\left(t_{0}+2 \Delta T\right)\right) d t\right) \delta\left(t-\left(t_{0}+2 \Delta T\right)\right) \\
& \left(\int_{-\infty}^{\infty} f(t) \delta\left(t-\left(t_{0}+3 \Delta T\right)\right) d t\right) \quad \text { 十 }
\end{aligned}
$$

Sampling: step by step

$$
\begin{aligned}
&\left(\int_{-\infty}^{\infty} f(t) \delta\left(t-t_{0}\right) d t\right) \delta\left(t-t_{0}\right) \\
& f(t)=\left(\int_{-\infty}^{\infty} f(t) \delta\left(t-\left(t_{0}+\Delta T\right)\right) d t\right) \delta\left(t-\left(t_{0}+\Delta T\right)\right) \\
&\left(\int_{-\infty}^{\infty} f(t) \delta\left(t-\left(t_{0}+2 \Delta T\right)\right) d t\right) \delta\left(t-\left(t_{0}+2 \Delta T\right)\right) \\
&\left(\int_{-\infty}^{\infty} f(t) \delta\left(t-\left(t_{0}+3 \Delta T\right)\right) d t\right) \delta\left(t-\left(t_{0}+3 \Delta T\right)\right) \\
& \text { ○ Torsten Moller }
\end{aligned}
$$

Sampling: step by step

$$
\begin{aligned}
& \left(\int_{-\infty}^{\infty} f(t) \delta\left(t-t_{0}\right) d t\right) \delta\left(t-t_{0}\right) \\
& f[0] \delta\left(t-t_{0}\right) \\
& \text { 十 } \\
& \left(\int_{-\infty}^{\infty} f(t) \delta\left(t-\left(t_{0}+\Delta T\right)\right) d t\right) \delta\left(t-\left(t_{0}+\Delta T\right)\right) \\
& f[1] \delta\left(t-\left(t_{0}+\Delta T\right)\right) \\
& f(t)= \\
& \left(\int_{-\infty}^{\infty} f(t) \delta\left(t-\left(t_{0}+2 \Delta T\right)\right) d t\right) \delta\left(t-\left(t_{0}+2 \Delta T\right)\right) \\
& \left(\int_{-\infty}^{\infty} f(t) \delta\left(t-\left(t_{0}+3 \Delta T\right)\right) d t\right) \underset{\delta\left(t-\left(t_{0}+3 \Delta T\right)\right)}{\text { (}}
\end{aligned}
$$

Sampling：step by step

$$
\begin{aligned}
& \left(\int_{-\infty}^{\infty} f(t) \delta\left(t-t_{0}\right) d t\right) \delta\left(t-t_{0}\right) \\
& \text { 十 十 } \\
& \left(\int_{-\infty}^{\infty} f(t) \delta\left(t-\left(t_{0}+\Delta T\right)\right) d t\right) \delta\left(t-\left(t_{0}+\Delta T\right)\right) \\
& f[1] \delta\left(t-\left(t_{0}+\Delta T\right)\right) \\
& f(t)= \\
& \left(\int_{-\infty}^{\infty} f(t) \delta\left(t-\left(t_{0}+2 \Delta T\right)\right) d t\right) \delta\left(t-\left(t_{0}+2 \Delta T\right)\right) \\
& f[2] \delta\left(t-\left(t_{0}+2 \Delta T\right)\right) \\
& \left(\int_{-\infty}^{\infty} f(t) \delta\left(t-\left(t_{0}+3 \Delta T\right)\right) d t\right) \delta\left(t-\left(t_{0}+3 \Delta T\right)\right)
\end{aligned}
$$

Sampling：step by step

$$
\begin{aligned}
& \left(\int_{-\infty}^{\infty} f(t) \delta\left(t-t_{0}\right) d t\right) \delta\left(t-t_{0}\right) \\
& \text { 十 十 } \\
& \left(\int_{-\infty}^{\infty} f(t) \delta\left(t-\left(t_{0}+\Delta T\right)\right) d t\right) \delta\left(t-\left(t_{0}+\Delta T\right)\right) \\
& f[1] \delta\left(t-\left(t_{0}+\Delta T\right)\right) \\
& f(t)= \\
& \left(\int_{-\infty}^{\infty} f(t) \delta\left(t-\left(t_{0}+2 \Delta T\right)\right) d t\right) \delta\left(t-\left(t_{0}+2 \Delta T\right)\right) \\
& f[2] \delta\left(t-\left(t_{0}+2 \Delta T\right)\right) \\
& \text { 十 } \\
& \left(\int_{-\infty}^{\infty} f(t) \delta\left(t-\left(t_{0}+3 \Delta T\right)\right) d t\right) \delta\left(t-\left(t_{0}+3 \Delta T\right)\right) \\
& \text { 十 } \\
& f[3] \delta\left(t-\left(t_{0}+3 \Delta T\right)\right)
\end{aligned}
$$

A more general view on sampling

- in summary:

$$
\begin{aligned}
& f(t)=\sum_{n=-\infty}^{\infty}\left(\int_{-\infty}^{\infty} f(t) \delta(t-n \Delta T) d t\right) \delta(t-n \Delta T) \\
& f(t)=\sum_{n=-\infty}^{\infty} f[n] \delta(t-n \Delta T)
\end{aligned}
$$

- more generally:

$$
\begin{aligned}
& f(t)=\sum_{n=-\infty}^{\infty}\left(\int_{-\infty}^{\infty} f(t) \psi(t-n \Delta T) d t\right) \delta(t-n \Delta T) \\
& f(t)=\sum_{n=-\infty}^{\infty} c[n] \delta(t-n \Delta T)
\end{aligned}
$$

A more general view on sampling

- in summary:

$$
\begin{aligned}
& f(t)=\sum_{n=-\infty}^{\infty}\left(\int_{-\infty}^{\infty} f(t) \delta(t-n \Delta T) d t\right) \delta(t-n \Delta T) \\
& f(t)=\sum_{n=-\infty}^{\infty} f[n] \delta(t-n \Delta T)
\end{aligned}
$$

- even more general:

$$
\begin{aligned}
& f(t)=\sum_{n=-\infty}^{\infty}\left(\int_{-\infty}^{\infty} f(t) \Psi(t-n \Delta T) d t\right) \Phi(t-n \Delta T) \\
& f(t)=\sum_{n=-\infty}^{\infty} c[n] \phi(t-n \Delta T)
\end{aligned}
$$

Sampling: generalization I

Sampling: generalization I

$$
\psi(t)
$$

Sampling: generalization II

A more general view on sampling

- in summary:

$$
\begin{aligned}
& f(t) \approx \sum_{n=-\infty}^{\infty}\left(\int_{-\infty}^{\infty} f(t) \psi(t-n \Delta T) d t\right) \phi(t-n \Delta T) \\
& f(t) \approx \sum_{n=-\infty}^{\infty} c[n] \phi(t-n \Delta T)
\end{aligned}
$$

- y also known as a "point-spread function"; common for image acquisition
- f also known as the reconstruction function

Function spaces

- in summary:

$$
\begin{aligned}
& f(t) \approx \sum_{n=-\infty}^{\infty}\left(\int_{-\infty}^{\infty} f(t) \psi(t-n \Delta T) d t\right) \phi(t-n \Delta T) \\
& f(t) \approx \sum_{n=-\infty}^{\infty} c[n] \phi(t-n \Delta T)
\end{aligned}
$$

- Perhaps the most general we will get (reverting to the notation in the book):

$$
\begin{gathered}
f(x)=\sum_{n} \alpha_{n} \phi_{n}(x) \\
\alpha_{n}=\left\langle\tilde{\phi}_{n}(x), f\left(\underset{\text { OTosen Moller }}{x} \int \tilde{\phi}_{n}^{*}(x) f(x) d x\right.\right.
\end{gathered}
$$

Function spaces

- in summary:

$$
\begin{aligned}
& f(t) \approx \sum_{n=-\infty}^{\infty}\left(\int_{-\infty}^{\infty} f(t) \psi(t-n \Delta T) d t\right) \phi(t-n \Delta T) \\
& f(t) \approx \sum_{n=-\infty}^{\infty} c[n] \phi(t-n \Delta T)
\end{aligned}
$$

- Perhaps the most general we will get (reverting to the notation in the book):

$$
\begin{gathered}
f(x)=\sum_{n} \alpha_{n} \phi_{n}(x) \\
\alpha_{n}=\left\langle\tilde{\phi}_{n}(x), f(x)\right\rangle \stackrel{n}{=} \int \tilde{\phi}_{\text {Tosten Moilcer }}^{*}(x) f(x) d x
\end{gathered}
$$

Function spaces

- Given an expansion with expansion set $\left\{\phi_{n}(\mathrm{x})\right.$ \}:

$$
f(x)=\sum_{n} \alpha_{n} \phi_{n}(x)
$$

- If the expansion is unique, then $\left\{\phi_{n}(x)\right\}$ is a basis spanning a function space V :

$$
V=\overline{\operatorname{Span}\left\{\phi_{n}(x)\right\}}
$$

Ortonormal Basis

- if $\left\{\phi_{\mathrm{n}}(\mathrm{x})\right\}$ are orthonormal, i.e.

$$
\left\langle\phi_{j}, \phi_{k}\right\rangle=\delta_{j k}= \begin{cases}0 & j \neq k \\ 1 & j=k\end{cases}
$$

- then the dual basis is equal to the actual basis:

$$
\phi_{k}=\tilde{\phi}_{k}
$$

- and hence: $\alpha_{n}=\left\langle\phi_{n}, f\right\rangle$

Bi-orthogonal basis

- For a bi-orthogonal basis, we have:

$$
\left\langle\phi_{j}, \tilde{\phi}_{k}\right\rangle=\delta_{j k}= \begin{cases}0 & j \neq k \\ 1 & j=k\end{cases}
$$

- and hence, we get:

$$
\alpha_{n}=\left\langle\tilde{\phi}_{n}, f\right\rangle
$$

(tight) frames

- the expansion is NOT a basis (overcomplete), but they form a frame:

$$
A\|f(x)\|^{2} \leq \sum_{k}\left|\left\langle\phi_{k}(x), f(x)\right\rangle\right|^{2} \leq B\|f(x)\|^{2}
$$

- tight, when $\mathrm{A}=\mathrm{B}$, and then we have:

$$
f(x)=\frac{1}{A} \sum_{k}\left\langle\phi_{k}(x), f(x)\right\rangle \phi_{k}(x)
$$

Special MR spaces! Scaling functions

- we would like to create MR spaces with nice properties, what basis functions should they have?
- key idea: self-similar functions:

$$
\phi_{j, k}(x)=2^{j / 2} \phi\left(2^{j} x-k\right)
$$

- a simple example

Haar scaling functions

Scaling functions

- key idea: self-similar functions:

$$
\phi_{j, k}(x)=2^{j / 2} \phi\left(2^{j} x-k\right)
$$

- k is just an offset, but j determines scale (resolution, accuracy)
- hence, looking at the spaces they span:

$$
V_{j}=\overline{\operatorname{Span}\left\{\phi_{j, k}(x)\right\}}
$$

- we really want them to be Matryoshkas:

$$
V_{-\infty} \subset \cdots \subset V_{-1} \subset V_{0} \subset V_{1} \subset V_{2} \subset \cdots V_{\infty}
$$

MR Scaling functions

- key idea: self-similar functions:

$$
\phi_{j, k}(x)=2^{j / 2} \phi\left(2^{j} x-k\right)
$$

$V_{-\infty} \in \cdots \in V_{-1} \in V_{0} \in V_{1} \in V_{2} \in \cdots V_{\infty}$

- with $V_{-\infty}=\{0\}$
- and $V_{\infty}=\left\{L^{2}(\mathcal{R})\right\}$

MR Scaling functions

- to make it all work, we need 4 conditions
1.The scaling function is orthogonal to its integer translations.
2.The subspaces spanned by the scaling function at low scales are nested within those spanned at higher scales.
3.The only function that is common to all Vj is $f(x)=0$.
4.Any function can be represented with arbitrary precision.

Refinement equation

- with this, we have:

$$
\begin{gathered}
\phi_{j, n}(x)=\sum_{n} \alpha_{n} \phi_{j+1, n}(x) \\
\phi_{j, n}(x)=\sum_{n} h_{\phi}(n) 2^{(j+1) / 2} \phi\left(2^{(j+1)} x-n\right)
\end{gathered}
$$

- which we call the refinement/MRA/ dilation equation:

$$
\phi(x)=\sum_{n} h_{\phi}(n) \sqrt{2} \phi(2 x-n)
$$

Wavelet space

- there is a space inbetween the resolutions! remember:
- hence:

Wavelet space

- We call these spaces W_{j} with basis y :

$$
\begin{gathered}
\psi_{j, k}(x)=2^{j / 2} \psi\left(2^{j} x-k\right) \\
W_{j}=\overline{\operatorname{Span}\left\{\psi_{j, k}(x)\right\}}
\end{gathered}
$$

- orthogonality between the spaces:

Wavelet space

- Conceptually:

$$
V_{-\infty} \subset \cdots \subset V_{-1} \subset V_{0} \subset V_{1} \subset V_{2} \subset \cdots V_{\infty}
$$

- which means:

$$
L^{2}(\mathcal{R})=V_{\infty}=V_{0} \oplus W_{0} \oplus W_{1} \oplus \cdots
$$

Wavelet spaces

- similar to the dilation equation, we have:

$$
\psi(x)=\sum_{n} h_{\psi}(n) \sqrt{2} \phi(2 x-n)
$$

- if integer wavelet translates are orthogonal, it can be shown that:

$$
h_{\psi}(n)=(-1)^{n} h_{\phi}(1-n)
$$

- Let's look at another example

Wavelet - Example

$f_{a}(x) \in V_{0}$

$f(x) \in V_{1}=V_{0} \oplus W_{0}$

Overview

- Background
- Multiresolution expansions
- understanding spaces
- scaling functions
- wavelet functions
- Wavelet transform in 1D
- Fast wavelet transform
- Wavelet transform in 2D
- Wavelet packets

Overview

- Background
- Multiresolution expansions
- Wavelet transform in 1D
- wavelet series expansion
- discrete wavelet transform
- continuous wavelet transform
- Fast wavelet transform
- Wavelet transform in 2D
- Wavelet packets

Wavelet series expansion

- starting with

$$
L^{2}(\mathcal{R})=V_{\infty}=V_{0} \oplus W_{0} \oplus W_{1} \oplus \cdots
$$

- actual formula:
$f(x)=\sum_{k} c_{0}(k) \phi_{0, k}(x)+\sum_{j=0}^{\infty} \sum_{k} d_{j}(k) \psi_{j, k}(x)$
- where

$$
\begin{aligned}
c_{0}(k) & =\left\langle f(x), \phi_{0, k}(x)\right\rangle=\int f(x) \phi_{0, k}(x) d x \\
d_{j}(k) & =\left\langle f(x), \psi_{j, k}(x)\right\rangle=\int f(x) \psi_{j, k}(x) d x
\end{aligned}
$$

Example

Discrete wavelet transform

- assuming $(\mathrm{n}=0,1,2, \ldots, \mathrm{M}-1)$:

$$
f(n)=f\left(x_{0}+n \Delta x\right)
$$

- we have

$$
f(n)=\frac{1}{\sqrt{M}} \sum_{k} c_{0}(k) \phi_{0, k}(n)+\frac{1}{\sqrt{M}} \sum_{j=0}^{\infty} \sum_{k} d_{j}(k) \psi_{j, k}(n)
$$

- where:

$$
\begin{aligned}
c_{0}(k) & =\frac{1}{\sqrt{M}} \sum_{n} f(n) \phi_{0, k}(n) \\
d_{j}(n) & =\frac{1}{\sqrt{M}} \sum_{n} f(n) \psi_{j, k}(n) \\
& \text { © Möler }
\end{aligned}
$$

Continuous wavelet transform

- a little more complicated:

$$
f(x)=\frac{1}{C_{\psi}} \int_{0}^{\infty} \int_{-\infty}^{\infty} W_{\psi}(s, \tau) \frac{\psi_{s, \tau}(x)}{s^{2}} d \tau d s
$$

- where

$$
C_{\psi}=\int_{-\infty}^{\infty} \frac{|\Psi(\mu)|^{2}}{|\mu|} d \mu \quad W_{\psi}(s, \tau)=\int_{-\infty}^{\infty} f(x) \psi_{s, \tau}(x) d x
$$

- with $\Psi(\mu)$ being the Fourier transf. of $\psi(x)$

Overview

- Background
- Multiresolution expansions
- Wavelet transform in 1D
- wavelet series expansion
- discrete wavelet transform
- continuous wavelet transform
- Fast wavelet transform
- Wavelet transform in 2D
- Wavelet packets

The FWT

- computing the wavelet transform seemed hard:

$$
\begin{gathered}
c_{0}(k)=\left\langle f(x), \phi_{0, k}(x)\right\rangle=\int f(x) \phi_{0, k}(x) d x \\
d_{j}(k)=\left\langle f(x), \psi_{j, k}(x)\right\rangle=\int f(x) \psi_{j, k}(x) d x \\
c_{0}(k)=\frac{1}{\sqrt{M}} \sum_{n} f(n) \phi_{0, k}(n) \\
d_{j}(n)=\frac{1}{\sqrt{M}} \sum_{n} f(n) \psi_{j, k}(n) \\
\text { © Мїller }
\end{gathered}
$$

FWT

- ... but it is really VERY easy, start with:

$$
\phi(x)=\sum_{n} h_{\phi}(n) \sqrt{2} \phi(2 x-n)
$$

- and then:

$$
\begin{aligned}
\phi\left(2^{j} x-k\right) & =\sum_{n} h_{\phi}(n) \sqrt{2} \phi\left(2\left(2^{j} x-k\right)-n\right) \\
& =\sum_{n} h_{\phi}(n) \sqrt{2} \phi\left(2^{j+1} x-2 k-n\right) \\
& =\sum_{m} h_{\phi}(m-2 k) \sqrt{2} \phi\left(2^{j+1} x-m\right)
\end{aligned}
$$

- similarly: $\psi\left(2^{j} x-k\right)=\sum_{m} h_{\psi}(m-2 k) \sqrt{2} \phi\left(2^{j+1} x-m\right)$

FWT, derivation cont.

- with $\psi\left(2^{j} x-k\right)=\sum_{m} h_{\psi}(m-2 k) \sqrt{2} \phi\left(2^{j+1} x-m\right)$
- we have

$$
\begin{aligned}
d_{j}(k) & =\int f(x) 2^{j / 2} \psi\left(2^{j} x-k\right)(x) d x \\
& =\int f(x) 2^{j / 2}\left[\sum_{m} h_{\psi}(m-2 k) \sqrt{2} \phi\left(2^{j+1} x-m\right)\right] d x \\
& =\sum_{m} h_{\psi}(m-2 k)\left[\int f(x) 2^{(j+1) / 2} \phi\left(2^{j+1} x-m\right) d x\right] \\
& =\sum_{m} h_{\psi}(m-2 k) c_{j+1}(m)
\end{aligned}
$$

FWT

- essentially, we have:

$$
\begin{aligned}
d_{j}(k) & =\sum_{m} h_{\psi}(m-2 k) c_{j+1}(m) \\
c_{j}(k) & =\sum_{m} h_{\phi}(m-2 k) c_{j+1}(m)
\end{aligned}
$$

FWT, pictorially

FWT $^{-1}$, synthesis part

FWT-1 ${ }^{-1}$, synthesis part

FWT, conceptually

a b c
FIGURE 7.23 Time-frequency tilings for the basis functions associated with (a) sampled data, (b) the FFT, and (c) the FWT. Note that the horizontal strips of equal height rectangles in (c) represent FWT scales.

Overview

- Background
- Multiresolution expansions
- Wavelet transform in 1D
- Fast wavelet transform
- Wavelet transform in 2D
- Wavelet packets

2D (+3D) wavelet transform

- standard appraoch is to use a separable transform:

$$
\begin{aligned}
\phi(x, y) & =\phi(x) \phi(y) \\
\psi_{L H}(x, y) & =\phi(x) \psi(y) \\
\psi_{H L}(x, y) & =\psi(x) \phi(y) \\
\psi_{H H}(x, y) & =\psi(x) \psi(y)
\end{aligned}
$$

2D wavelet transform

Example

| a | b |
| :--- | :--- | :--- |
| c | d |

FIGURE 7.25

Computing a 2-D three-scale FWT: (a) the original image; (b) a onescale FWT; (c) a two-scale FWT; and (d) a threescale FWT.

How to work with FWT

- Processing similar to Fourier transforms:
1.Compute the FWT (of an image, signal, volume)
2.Alter the transform
3.Compute the inverse transform
- most successful applications include compression, denoising and the like

Example 1

$\begin{array}{lll}\text { a } & b \\ \text { c } & \text { d }\end{array}$
FIGURE 7.27
Modifying a DWT for edge detection: (a) and (c) two-scale decompositions with selected coefficients deleted; (b) and (d) the corresponding reconstructions.

Example 2

Overview

- Background
- Multiresolution expansions
- Wavelet transform in 1D
- Fast wavelet transform
- Wavelet transform in 2D
- Wavelet packets

Wavelet packets

- Thus far, we have developed the pyramid one-sided:

a b

FIGURE 7.29
An (a) coefficient
tree and
(b) analysis tree
for the two-scale
FWT analysis

Wavelet packets - a frequency view

$$
\frac{\mathrm{a}}{\mathrm{~b} \mathrm{c}}
$$

FIGURE 7.30
A three-scale FWT filter bank:
(a) block diagram;
(b) decomposition space tree; and
(c) spectrum
splitting
characteristics.

Packets - a natural extension

FIGURE 7.31
 A three-scale wavelet packet analysis tree.

Packets - a natural extension

Packets - which decompostion to pick?

- which subtree should we pick in the complete tree for an efficient encoding of a signal?
- e.g. pick an additive cost function:

$$
E(f)=\sum_{m, n}|f(m, n)|
$$

- expand into children, only if children are 'cheaper'
- Example FBI fingerprinting data base

Fingerprints

cas							
8(6)			303	\%			
						\%	
	80.8	5					\%
				\mid			
			99		386		\%

FIGURE 7.36 (a) A scanned fingerprint and (b) its three-scale, full wavelet packet decomposition. (Original image courtesy of the National Institute of Standards and Technology.)

Fingerprints

FIGURE 7.37

An optimal wavelet packet decomposition for the fingerprint of Fig. 7.36(a).

