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Readings

• The Gonzales + Woods, Chapter 7
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Overview

• Background 
– image pyramids 
– subband coding 
– Haar 

• Multiresolution expansions 
• Wavelet transform in 1D 
• Fast wavelet transform 
• Wavelet transform in 2D 
• Wavelet packets
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Image pyramids

• sequence of same image of decreasing 
resolution
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Important operators

• 2↓ — Downsampling: 

• 2↑ — Upsampling:
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f2"(n) =

⇢
f(n/2) if n is even

0 otherwise
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Image pyramids

• can be build recursively
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Image pyramids

• can be build recursively 
– approximate level j-1 from level j 

• filter, then 
• downsample (by a factor of 2) 

– compute an estimate of level j from level j-1 
• upsample, then 
• filter 

– compute difference  
between level j and  
its estimation
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Image pyramids
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Image pyramids
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Image pyramids
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Image pyramids
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Image pyramids
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Image pyramids
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Subband coding

• in image is decomposed into a set of 
bandlimited components 

• try to keep all information to reassemble 
image from its components
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Subband coding
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g0(n) = (�1)nh1(n)

g1(n) = (�1)n+1h0(n)

g0(n) = (�1)n+1h1(n)

g1(n) = (�1)nh0(n)
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Subband coding

• building ‘perfect reconstruction filter 
banks’:
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or



g0(n) = (�1)nh1(n)

g1(n) = (�1)n+1h0(n)

g0(n) = (�1)n+1h1(n)

g1(n) = (�1)nh0(n)

hgi(n), gj(n+ 2m)i = �(i� j)�(m)
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Subband coding

• building ‘perfect reconstruction filter 
banks’: 

• fulfills biorthogonality: 

• desire also orthonormality:
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or

hhi(2n� k), gj(k)i = �(i� j)�(n)



g1(n) = (�1)ng0(Keven � 1� n)

hi(n) = gi(Keven � 1� n)
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Subband coding

• orthonomality requires:
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Subband coding in 2D

• doing things first by row and then by 
column
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Example
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Example
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Haar

• perhaps the oldest transform (1910) 
• certainly the most simplest
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Haar transform example
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Overview

• Background 
– image pyramids 
– subband coding 
– Haar 

• Multiresolution expansions 
• Wavelet transform in 1D 
• Fast wavelet transform 
• Wavelet transform in 2D 
• Wavelet packets
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Overview

• Background 
• Multiresolution expansions 

– understanding spaces 
– scaling functions 
– wavelet functions 

• Wavelet transform in 1D 
• Fast wavelet transform 
• Wavelet transform in 2D 
• Wavelet packets
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What is sampling?
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Sampling: step by step
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Sampling: step by step

33

= =
+
+
+

+
+
+

✓Z 1

�1
f(t)�(t� t0)dt

◆
�(t� t0)



f(t)

© Torsten Möller

Sampling: step by step
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Sampling: step by step
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Sampling: step by step
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Sampling: step by step
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Sampling: step by step
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Sampling: step by step
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Sampling: step by step
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A more general view on sampling

• in summary: 

• more generally:
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A more general view on sampling

• in summary: 

• even more general:
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Sampling: generalization I
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Sampling: generalization I
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Sampling: generalization II
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A more general view on sampling

• in summary: 

• y also known as a “point-spread 
function”; common for image acquisition 

• f also known as the reconstruction 
function
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Function spaces

• in summary: 

• Perhaps the most general we will get 
(reverting to the notation in the book):
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Function spaces

• in summary: 

• Perhaps the most general we will get 
(reverting to the notation in the book):
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Function spaces

• Given an expansion with expansion set 
{φn(x)}: 

• If the expansion is unique, then {φn(x)} is 
a basis spanning a function space V:
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f(x) =
X

n

↵n�n(x)
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Ortonormal Basis

• if {φn(x)} are orthonormal, i.e. 

• then the dual basis is equal to the actual 
basis:  

• and hence:
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h�j ,�ki = �jk =

⇢
0 j 6= k
1 j = k
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Bi-orthogonal basis

• For a bi-orthogonal basis, we have: 

• and hence, we get:
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(tight) frames

• the expansion is NOT a basis 
(overcomplete), but they form a frame: 

• tight, when A=B, and then we have:
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A||f(x)||2 
X

k

|h�k(x), f(x)i|2  B||f(x)||2

f(x) =
1

A

X

k

h�k(x), f(x)i�k(x)
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Special MR spaces! 
Scaling functions

• we would like to create MR spaces with 
nice properties, what basis functions 
should they have? 

• key idea: self-similar functions: 

• a simple example
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�j,k(x) = 2j/2�(2jx� k)
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Haar scaling functions

54
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Scaling functions

• key idea: self-similar functions: 

• k is just an offset, but j determines scale 
(resolution, accuracy) 

• hence, looking at the spaces they span: 

• we really want them to be Matryoshkas:
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�j,k(x) = 2j/2�(2jx� k)

Vj = Span{�j,k(x)}

V�1 ⇢ · · · ⇢ V�1 ⇢ V0 ⇢ V1 ⇢ V2 ⇢ · · ·V1
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MR Scaling functions

• key idea: self-similar functions: 

• with 
• and 

56

�j,k(x) = 2j/2�(2jx� k)
V�1 2 · · · 2 V�1 2 V0 2 V1 2 V2 2 · · ·V1

V�1 = {0}
V1 = {L2(R)}
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MR Scaling functions

• to make it all work, we need 4 conditions 
1.The scaling function is orthogonal to its 

integer translations. 
2.The subspaces spanned by the scaling 

function at low scales are nested within 
those spanned at higher scales. 

3.The only function that is common to all Vj is 
f(x) = 0. 

4.Any function can be represented with 
arbitrary precision.
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Refinement equation

• with this, we have: 

• which we call the refinement/MRA/
dilation equation:
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Wavelet space

• there is a space inbetween the 
resolutions! remember: 

• hence:
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Wavelet space

• We call these spaces Wj with basis y: 

• orthogonality between the spaces:
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 j,k(x) = 2j/2 (2jx� k)
Wj = Span{ j,k(x)}

h�j,k(x), j,l(x)i = 0
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Wavelet space

• Conceptually: 

• which means:
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V�1 ⇢ · · · ⇢ V�1 ⇢ V0 ⇢ V1 ⇢ V2 ⇢ · · ·V1

L2(R) = V1 = V0 �W0 �W1 � · · ·
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Wavelet spaces

• similar to the dilation equation, we have: 

• if integer wavelet translates are 
orthogonal, it can be shown that: 

• Let’s look at another example
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 (x) =
X

n

h (n)
p
2�(2x� n)

h (n) = (�1)nh�(1� n)
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Wavelet — Example
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Overview

• Background 
• Multiresolution expansions 

– understanding spaces 
– scaling functions 
– wavelet functions 

• Wavelet transform in 1D 
• Fast wavelet transform 
• Wavelet transform in 2D 
• Wavelet packets
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Overview

• Background 
• Multiresolution expansions 
• Wavelet transform in 1D 

– wavelet series expansion 
– discrete wavelet transform 
– continuous wavelet transform 

• Fast wavelet transform 
• Wavelet transform in 2D 
• Wavelet packets
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Wavelet series expansion

• starting with 

• actual formula: 

• where
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L2(R) = V1 = V0 �W0 �W1 � · · ·
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k
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k
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Example
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Discrete wavelet transform

• assuming (n=0, 1, 2, ..., M-1): 

• we have 

• where:
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f(n) = f(x0 + n�x)
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Continuous wavelet transform

• a little more complicated: 

• where 

• with          being the Fourier transf. of 
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Overview

• Background 
• Multiresolution expansions 
• Wavelet transform in 1D 

– wavelet series expansion 
– discrete wavelet transform 
– continuous wavelet transform 

• Fast wavelet transform 
• Wavelet transform in 2D 
• Wavelet packets
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The FWT

• computing the wavelet transform 
seemed hard:
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c0(k) = hf(x),�0,k(x)i =
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FWT

• ... but it is really VERY easy, start with: 

• and then: 

• similarly: 
72
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FWT, derivation cont.

• with 
• we have
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dj(k) =

Z
f(x)2j/2 (2jx� k)(x)dx

=
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FWT

• essentially, we have:
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dj(k) =
X

m

h (m� 2k)cj+1(m)

cj(k) =
X

m

h�(m� 2k)cj+1(m)
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FWT, pictorially
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FWT-1, synthesis part
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FWT-1, synthesis part
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FWT, conceptually
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2D (+3D) wavelet transform

• standard appraoch is to use a separable 
transform:

80

�(x, y) = �(x)�(y)

 LH(x, y) = �(x) (y)

 HL(x, y) =  (x)�(y)

 HH(x, y) =  (x) (y)
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2D wavelet transform
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Example
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How to work with FWT

• Processing similar to Fourier transforms: 
1.Compute the FWT (of an image, signal, 

volume) 
2.Alter the transform 
3.Compute the inverse transform 

• most successful applications include 
compression, denoising and the like
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Example 1

84



© Möller

Example 2
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Wavelet packets

• Thus far, we have developed the pyramid 
one-sided:
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Wavelet packets — a 
frequency view
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Packets — a natural extension
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Packets — a natural extension
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Packets — which 
decompostion to pick?

• which subtree should we pick in the 
complete tree for an efficient encoding of 
a signal? 

• e.g. pick an additive cost function: 

• expand into children, only if children are 
‘cheaper’ 

• Example FBI fingerprinting data base
91

E(f) =
X

m,n

|f(m,n)|
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Fingerprints
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Fingerprints
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