Scalar 3D Data

3D Image Processing Alireza Ghane

Readings

- The Visualization Handbook:
 - Chapter 9 (Multidimensional Transfer Functions for Volume Rendering)
- Marc Levoy: Display of Surfaces from Volume Data, IEEE Computer Graphics and Applications, Vol. 8, No. 3, May, 1988, pp. 29-37
- K. Engel, M. Hadwiger, J. M. Kniss, C. Rezk-Salama, D. Weiskopf: Real-time Volume Graphics, AK Peters, 2006
 - Chapter 4 (Transfer Functions)
 - Chapter 10 (Transfer Functions Reloaded)
 - Chapter 5 (Local Volume Illumination)

Overview

- Basic strategies
- Function plots and height fields
- Isolines
- Color coding
- Volume visualization (overview)
- Classification
- Segmentation
- Volumetric illumination
- Scalar Data in High-D

Basic Strategies

- Visualization of 1D, 2D, or 3D scalar fields
 - 1D scalar field: $\Omega \in R
 ightarrow R$
 - 2D scalar field: $\Omega \in R^2 \to R$
 - 3D scalar field: $\Omega \in R^3 \to R$

→ Volume visualization!

Basic Strategies

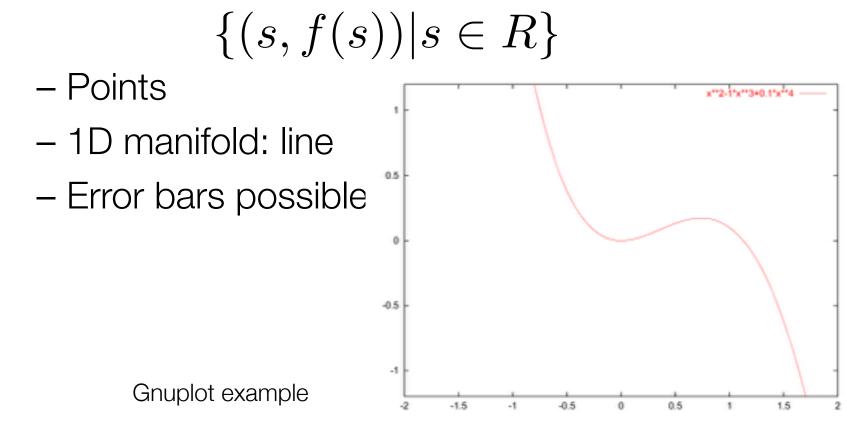
- Mapping to geometry
 - Function plots
 - Height fields
 - Isolines and isosurfaces
- Color coding
- Specific techniques for 3D data
 - Indirect volume visualization
 - Direct volume visualization
 - Slicing
- Visualization method depend heavily on dimensionality of domain

Overview

- Basic strategies
- Function plots and height fields
- Isolines
- Color coding
- Volume visualization (overview)
- Classification
- Segmentation
- Volumetric illumination
- Scalar Data in High-D

Function Plots and Height Fields

• Function plot for a 1D scalar field



Function Plots and Height Fields

• Function plot for a 2D scalar field $\{(s,t,f(s,t))|(s,t)\in R^2\}$

– Points

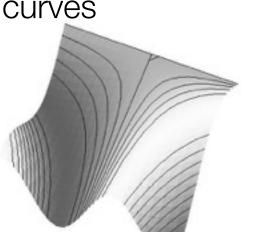
- 2D manifold: surface
- Surface representation
 - Wireframe
 - Hidden lines
 - Shaded surface

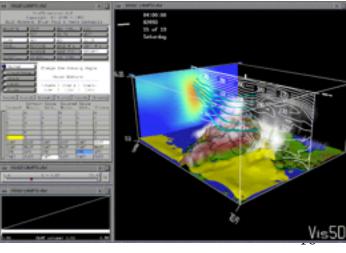
Overview

- Basic strategies
- Function plots and height fields
- Isolines
- Color coding
- Volume visualization (overview)
- Classification
- Segmentation
- Volumetric illumination
- Scalar Data in High-D

Isolines

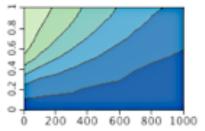
- Visualization of 2D scalar fields
- Given a scalar function $f:\Omega \to R$ and a scalar value $c \in R$
- Isoline consists of points $\{(x,y)|f(x,y)=c\}$
- If f() is differentiable and $grad(f) \neq 0$, then isolines are curves
- Contour lines

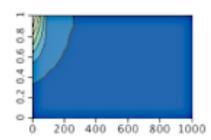


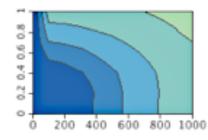


Colorpleth / Isopleth % yrs esc < target

80 90 3 30 0 400 600 800 1000 200 0





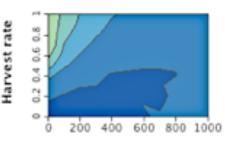


Med sub

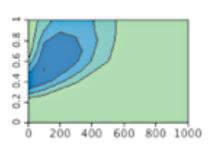
Avg sub

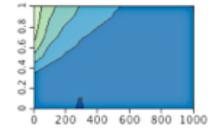
CV sub

% yrs < sub



Med com





Avg com

0.4 0.6 0.8

r i

ő

0

200

400

600

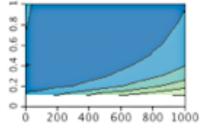
800

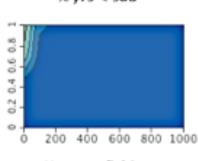
200

CV com

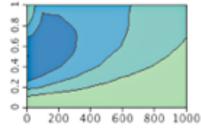
600

800 1000





% yrs no fishing



Escapement target

1000

0.4 0.6 0.8

2

0

0

Isolines

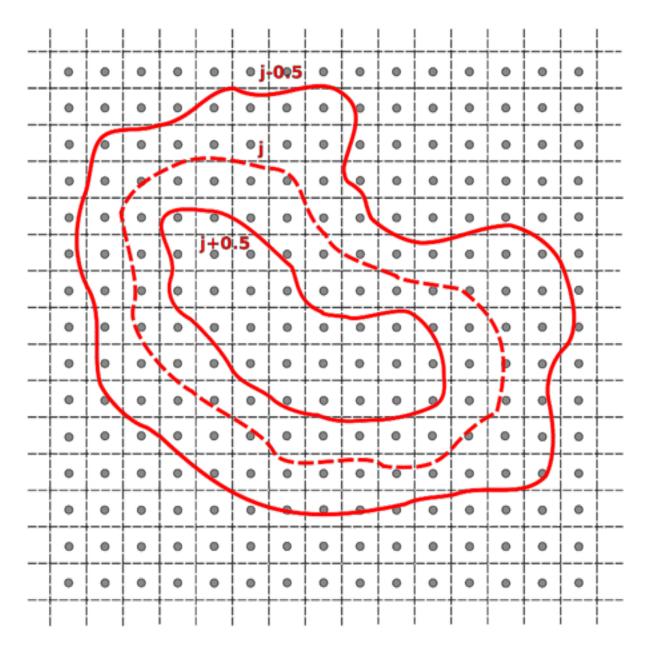
- Pixel by pixel contouring
- Straightforward approach: scanning all pixels for equivalence with isovalue
- Input
 - $f: (1, \dots, x_{max}) \times (1, \dots, y_{max}) \rightarrow \mathbf{R}$
 - Isovalues I_1, \dots, I_n and isocolors c_1, \dots, c_n
- Algorithm

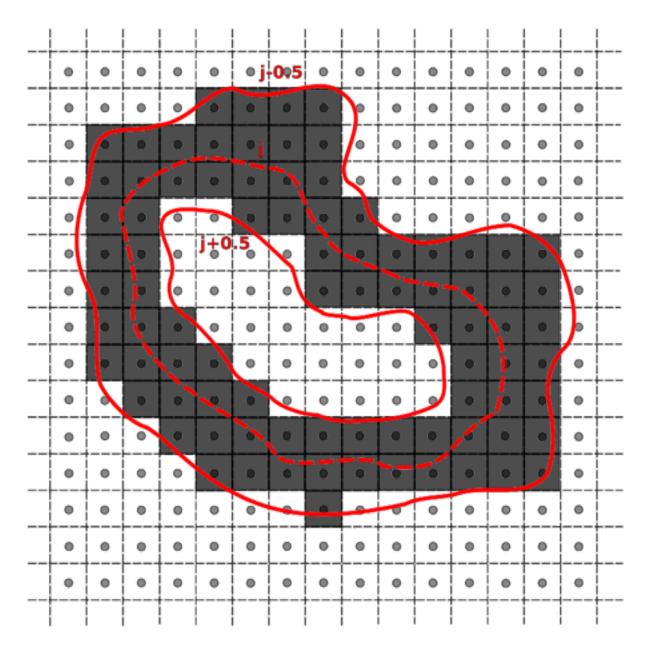
for all
$$(x,y) \in (1,...,x_{max}) \times (1,...,y_{max})$$
 do
for all $k \in \{1,...,n\}$ do
if $|f(x,y)-I_k| < \varepsilon$ then
draw (x,y,c_k)

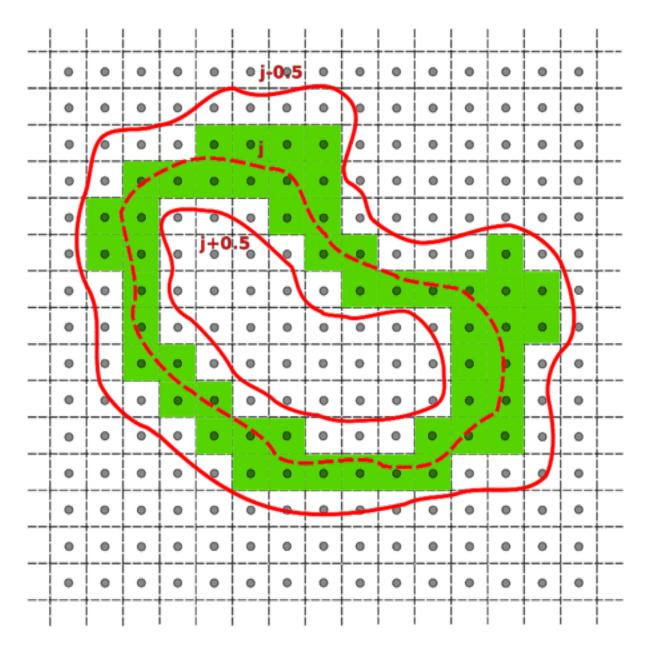
Problem: Isoline can be missed if the gradient of *f()* is too large (despite range ε)

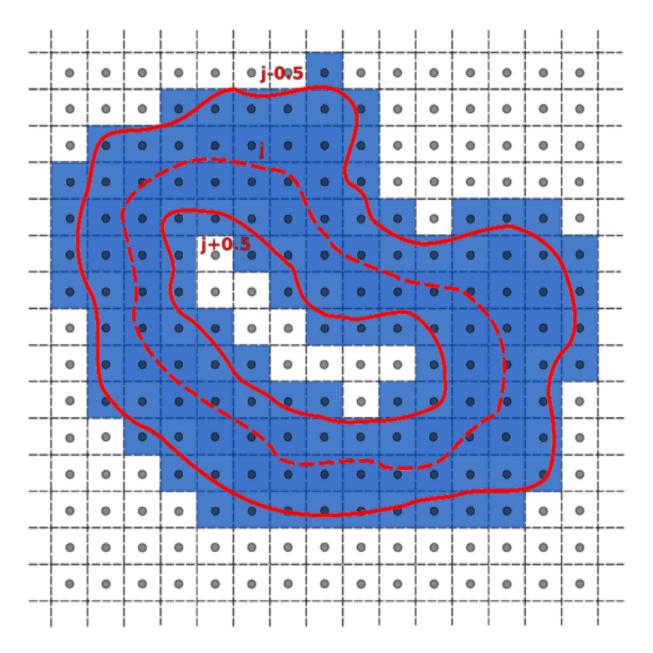
۲	۰	۲	۲	•	۰	۲	۰	۰	۲	۰	۰	۲	۰	۰
•	۲	۲	۲	۲	۲	۲	٠	٠	۲	٠	٠	۰	۲	۲
•	•	٠	۲	•	•	۲	•	•	۲	•	•	٠	•	•
•	۰	•	•	•	•	•	•	٠	٠	٠	•	۰	•	0
•	•	•	۰	•	۰	۰	•	•	۰	•	•	۰	•	•
•	•	•	۰	•	•	•	•	۰	•	•	•	۰	•	•
•	0	•	۲	•	۰	۰	•	٠	۰	•	٠	۲	۰	•
•	0	٥	٠	•	•	•	•	٠	•	•	•	٠	•	۰
•	•	0	•	۰	•	•	•	•	•	•	•	۰	۲	•
•	0	•	۲	•	۰	۲	•	۲	•	•	•	۲	۲	•
•	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠
•	0	•	۲	•	٠	٠	•	•	٠	•	•	۲	۲	٠
•	۰	•	۲	•	٠	۲	•	•	•	•	•	۲	•	٠
•	0	•	0	•	0	0	•	0	0	•	•	٠	٠	•
•	•	•	•	•	•	۲	•	•	•	•	•	•	•	•

					 								 	l	
•	•	•	•	•	•	۲	•	•	•	•	•	•	۲	•	
 •	•	•	•	۲	•	•	٠	•	•	•	•	•	•	•	
 ۰	•	۰	۲	۲	•	۲	۲	۰	۰	۰	۲	۲	۰	•	1
 •	•	•	۰	۲	۰	•	۲	۰	•	٠	•	۰	•	•	
 ۰	•	۰	۲	۲	۰	۲	۰	٠	٠	٠	۲	۲	٠	•	
	•	•	•	۲	•	۰	۰	•	•	•	۰	0	•	•	
 ٠	•	۰	۲	۲	۲	۲	۲	۲	٠	۲	۲	۲	۲	•	
	•	•	۲	۲	•	۰	۰	٠	٠	۰	•	۰	۰	•	
 ۰	•	۰	۰	۲	۲	•	۲	۰	۰	۲	۰	۰	۲	•	
 ۰	•	•	۲	•	•	۲	۲	۲	•	٠	۲	۲	•	•	
 ۰	•	۰	۲	۲	•	•	•	•	۰	۰	•	0	۰	•	
 •	•	•	•	۲	۲	۲	۲	۲	٠	٠	۲	۲	۲	•	
 0	0	۲	0	0	•	۲	۰	۲	0	•	۲	۲	۲	•	
 0	0	0	0	۰	۲	٥	۰	0	0	۰	۰	0	۲	•	
 ۲		۲	0	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	•	

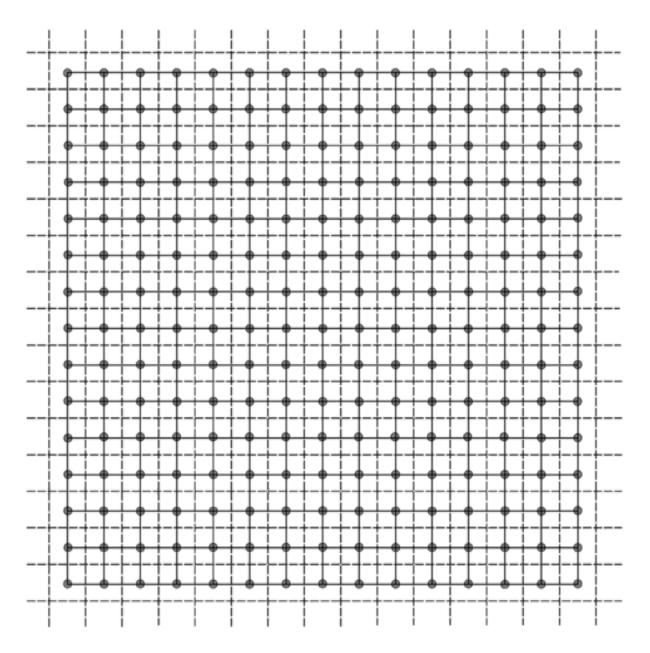


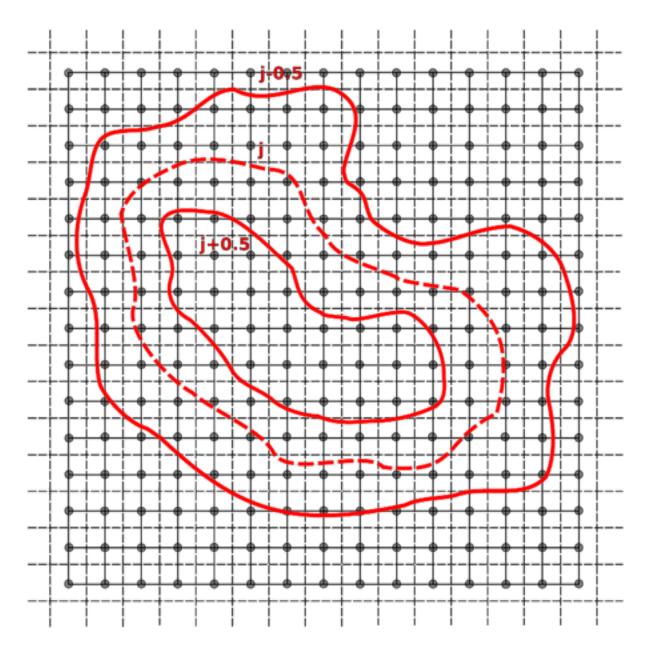




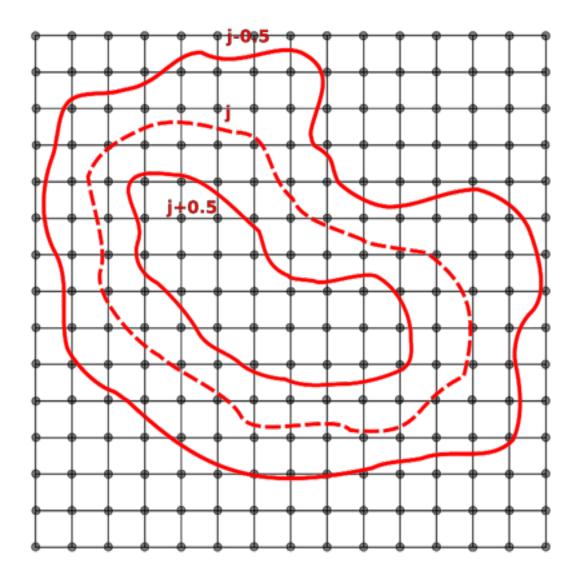


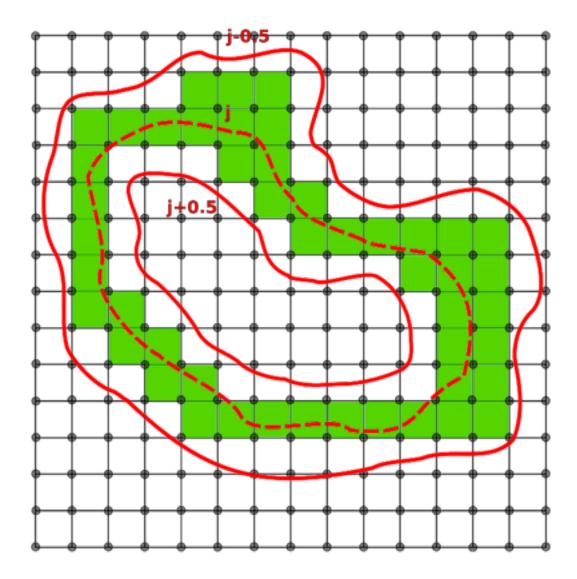
					 								 	l	
•	•	•	•	•	•	۲	•	•	•	•	•	•	۲	•	
 •	•	•	•	۲	•	•	۰	•	•	•	•	•	•	•	
 ۰	•	۰	۲	۲	•	۲	۲	۰	۰	۰	۲	۲	۰	•	1
 •	•	•	۰	۲	۰	•	۲	۰	•	٠	•	۰	•	•	
 ۰	•	۰	۲	۲	۰	۲	۰	٠	٠	٠	۲	۲	٠	•	
	•	•	•	۲	•	۰	۰	•	•	•	۰	0	•	•	
 ٠	•	۰	۲	۲	۲	۲	۲	۲	٠	۲	۲	۲	۲	•	
	•	•	۲	۲	•	۰	۰	٠	٠	۰	•	۰	۰	•	
 ۰	•	۰	۰	۲	۲	•	۲	۰	۰	۲	۰	۰	۲	•	
 ۰	•	•	۲	•	•	۲	۲	۲	•	٠	۲	۲	•	•	
 ۰	•	۰	۲	۲	•	•	•	•	۰	۰	•	0	۰	•	
 •	•	•	•	۲	۲	۲	۲	۲	٠	٠	۲	۲	۲	•	
 0	0	۲	0	0	•	۲	۰	۲	0	•	۲	۲	۲	•	
 0	0	0	0	۰	۲	٥	۰	0	0	۰	۰	0	۲	•	
 ۲		۲	0	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	•	





© Weiskopf/Machiraju/Möller





Overview

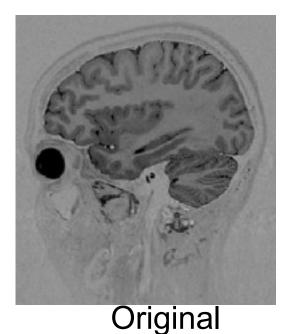
- Basic strategies
- Function plots and height fields
- Isolines
- Color coding
- Volume visualization (overview)
- Classification
- Segmentation
- Volumetric illumination
- Scalar Data in High-D

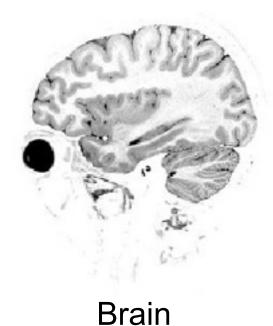
Color Coding

Easy to apply to 1D and 2D scalar fields
 Map color to each pixel on 1D or 2D image

Color Coding

- Example
 - Special color table to visualize the brain tissue
 - Special color table to visualize the bone structure



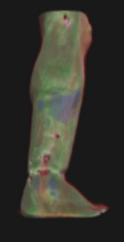


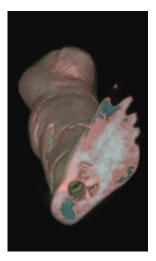
Overview

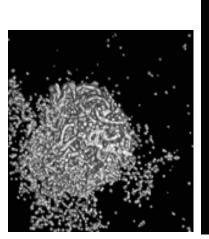
- Basic strategies
- Function plots and height fields
- Isolines
- Color coding
- Volume visualization (overview)
- Classification
- Segmentation
- Volumetric illumination
- Scalar Data in High-D

Volume Visualization $\Omega \in \mathbb{R}^3 \to \mathbb{R}$

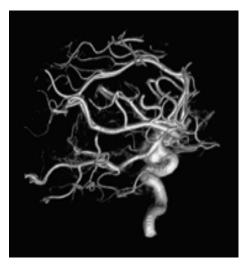
- Scalar volume data
- Medical Applications: CT, MRI, confocal microscopy, ultrasound, etc.

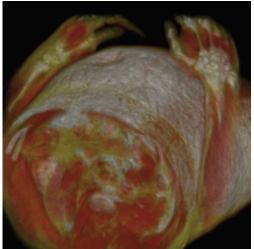


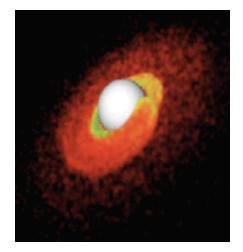


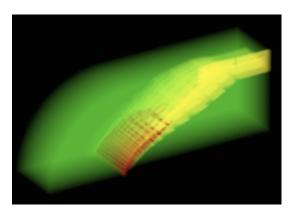


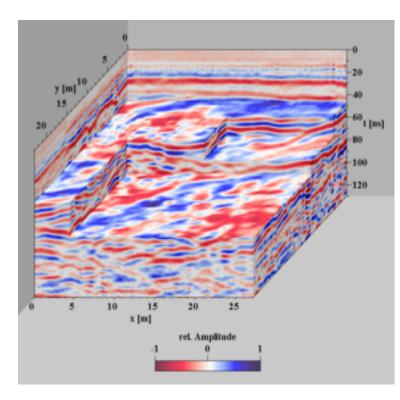


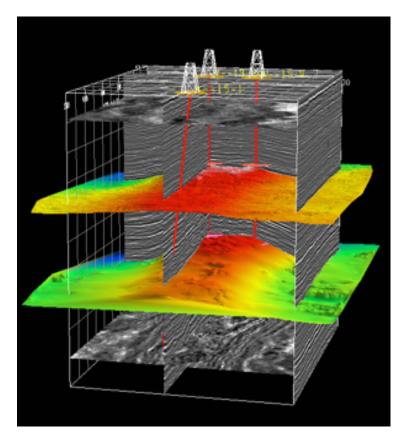




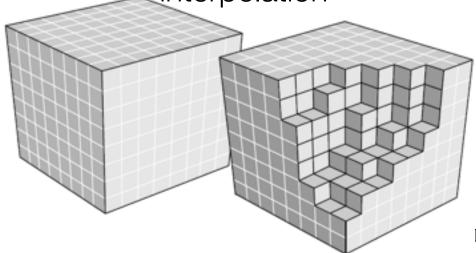








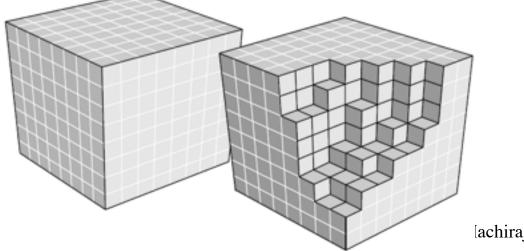
- Representation of scalar 3D data set $\Omega \in R^3 \to R$
- Analogy: pixel (picture element)
- Voxel (volume element), with two interpretations:
 - Values between grid points are resampled by interpolation



- Collection of voxels
- Uniform grid

[achiraju/Möller

- Challenges
 - Essential information in the interior
 - Occlusion?
 - Often data sets cannot be described by geometric representation (fire, clouds, gaseous phenomena)

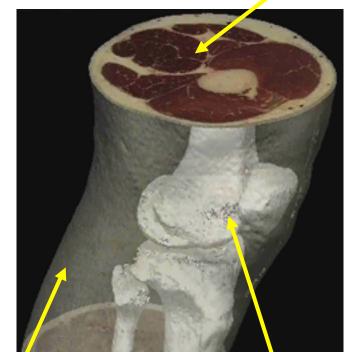


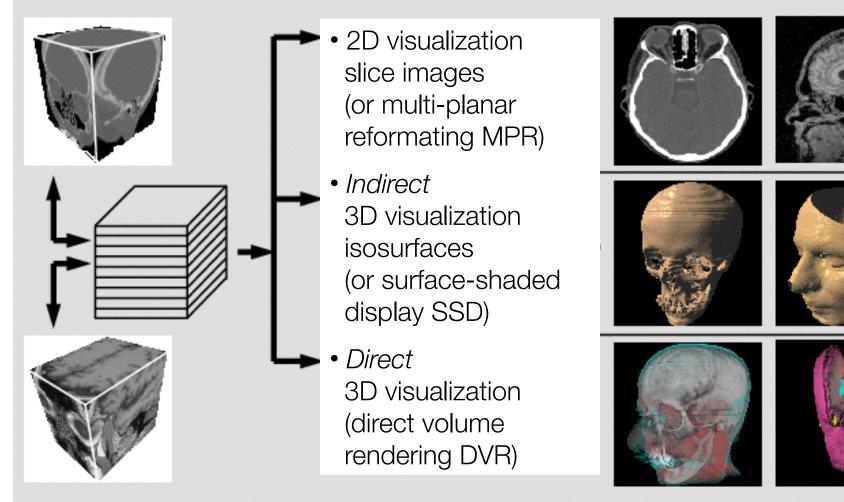
[achiraju/Möller

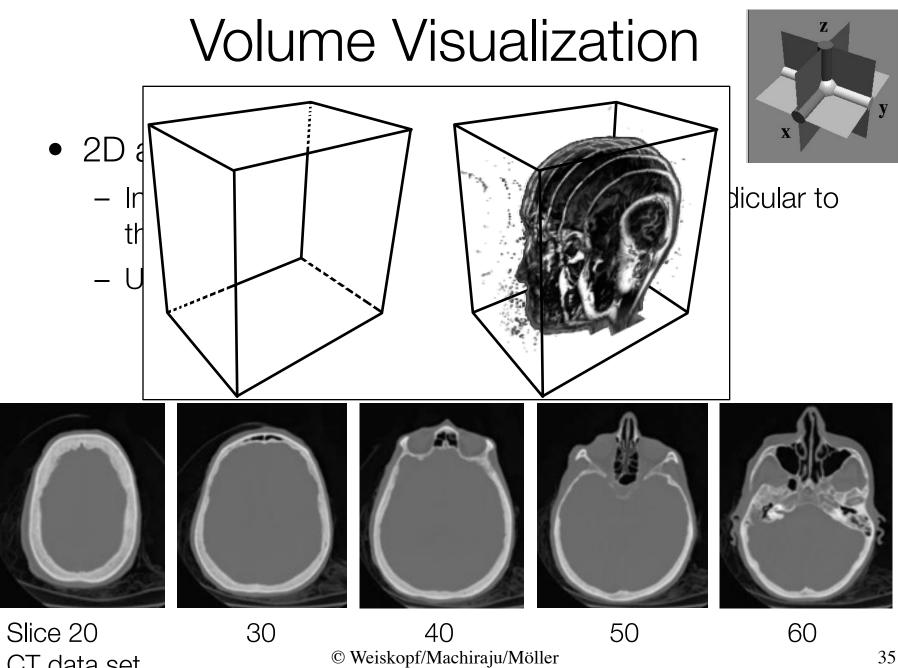
- Slicing: Display the volume data, mapped to colors, on a slice plane
- Isosurfacing: Generate opaque/semiopaque surfaces
- Transparency effects: Volume material attenuates reflected or emitted light © Weiskopf/Machiraju/Möller

Semi-transparent material

Isosurface



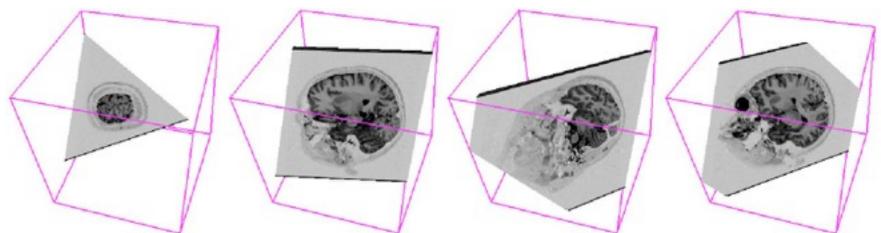




35

CT data set

- Alternative: Oblique slicing (MPR multiplanar reformating)
 - Resample the data on arbitrarily oriented slices
 - Resampling on CPU or on graphics hardware (trilinear interpolation)
 - Exploit 3D texture mapping functionality
 - Store volume in 3D texture
 - Compute sectional polygon (clip plane with volume bounding box)
 - Render textured polygon

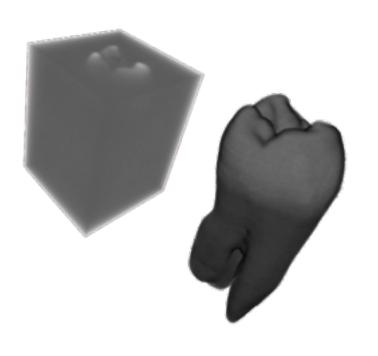


Overview

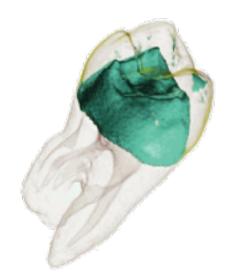
- Basic strategies
- Function plots and height fields
- Isolines
- Color coding
- Volume visualization (overview)
- Classification
- Segmentation
- Volumetric illumination
- Scalar Data in High-D

- Goals and issues:
 - Empowers user to select "structures"
 - Extract important features of the data set
 - Classification is non trivial
 - Histogram can be a useful hint
 - Often interactive manipulation of transfer functions needed
- Usually needed for volume visualization
- Standard approach: Transfer function
 - Color table for volume visualization
 - Maps raw voxel value into presentable entities: color, intensity, opacity, etc.

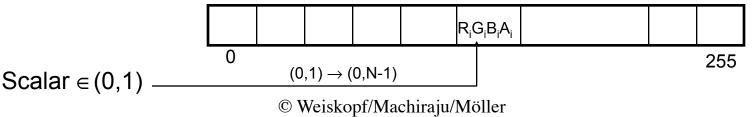
• Examples of different transfer functions

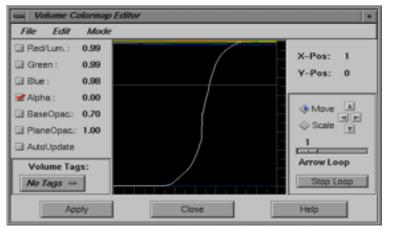


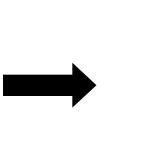


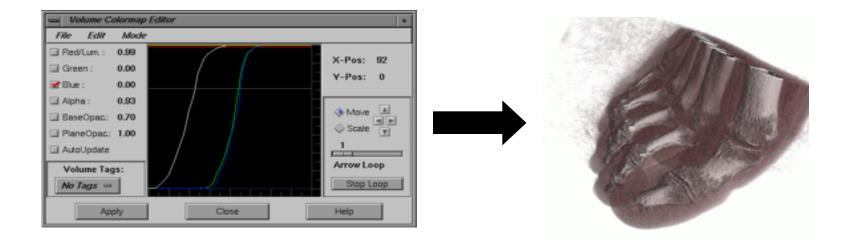


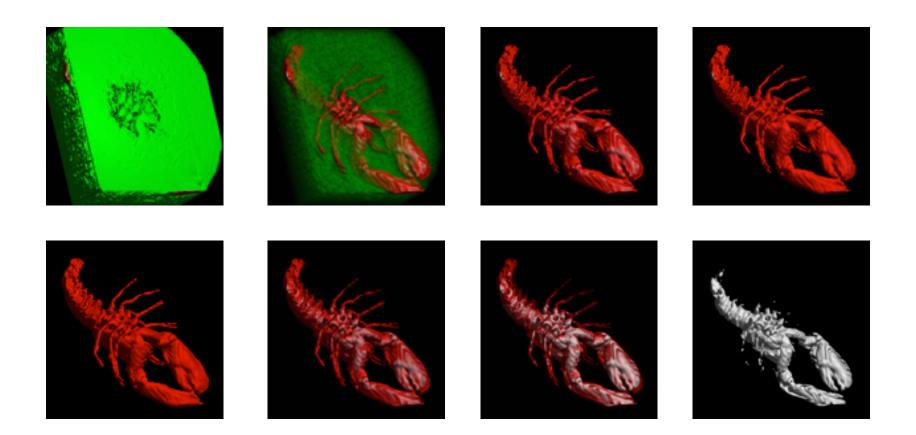
- Most widely used approach for transfer functions:
 - Assign each scalar value a different color value
 - Assignment via transfer function T
 - T : scalarvalue \rightarrow colorvalue
 - Common choice for color representation: RGBA
 - Alpha value is very important, describes opacity
 - Code color values into a color lookup table
 - On-the-fly update of color LUT



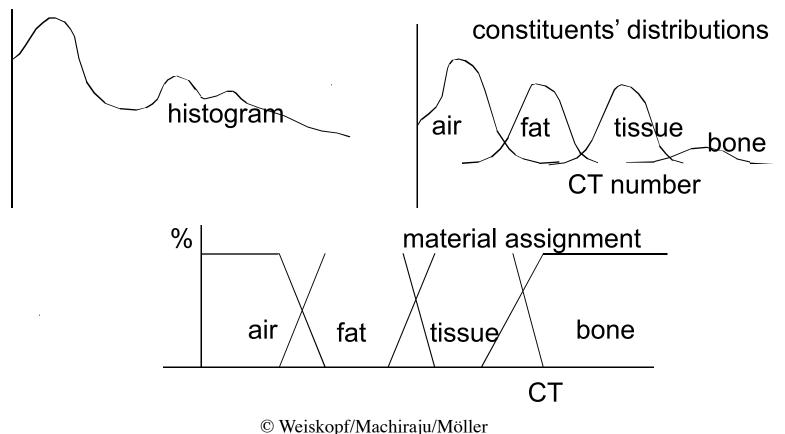




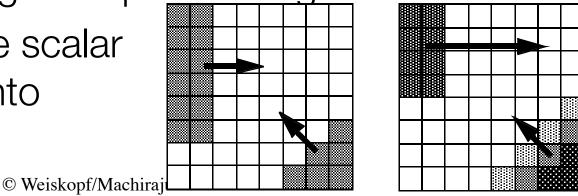




 Heuristic approach, based on measurements of many data sets

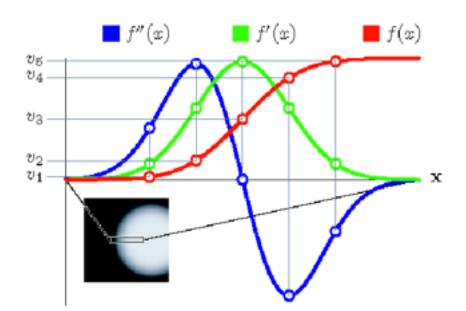


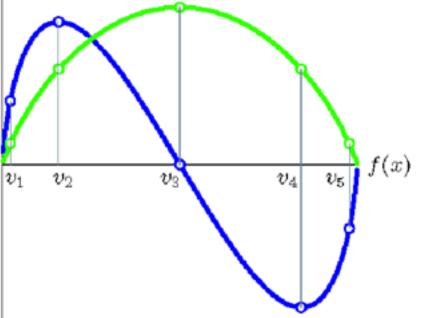
- Usually not only interested in a particular isosurface but also in regions of "change"
- Feature extraction High value of opacity in regions of change
 - Homogeneous regions less interesting transparent
- Surface "strength" depends on gradient
- Gradient of the scalar field is taken into account

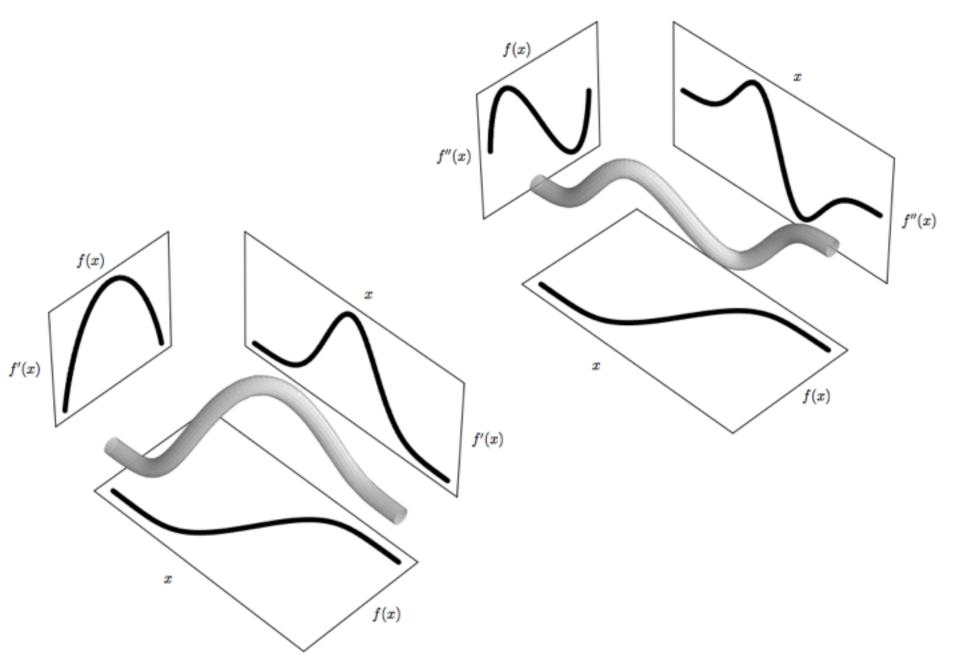


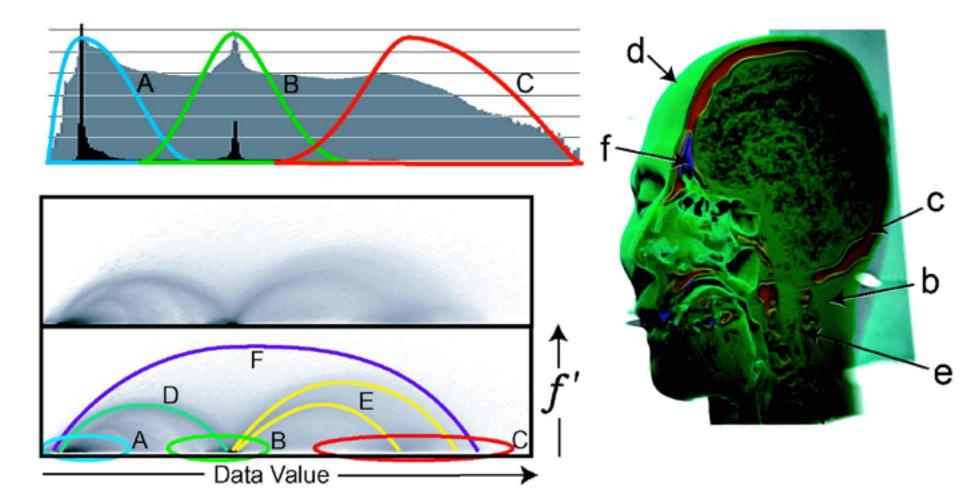
- Multidimensional transfer functions
 [Kindlmann & Durkin 98, Kniss, Kindlmann, Hansen 01]
- Problem: How to identify boundary regions/ surfaces
- Approach: 2D/3D transfer functions, depending on

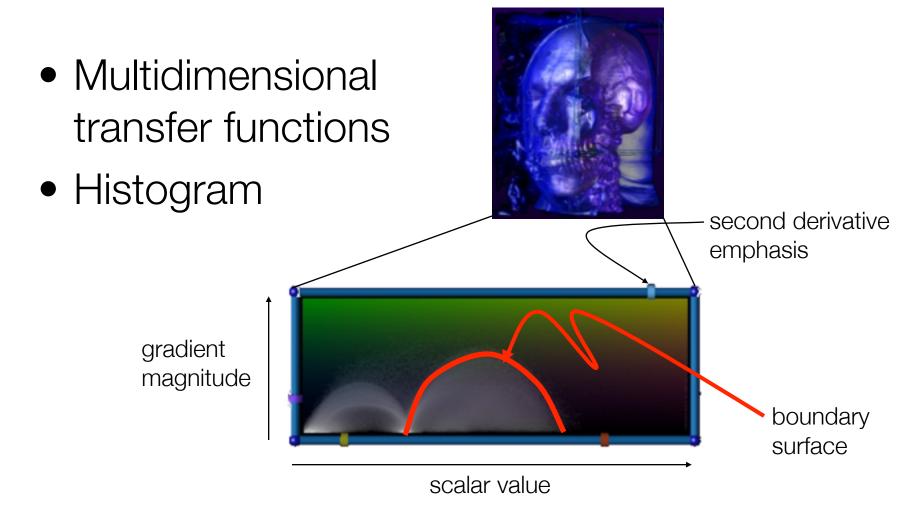
- Scalar value, magnitude of the gradient



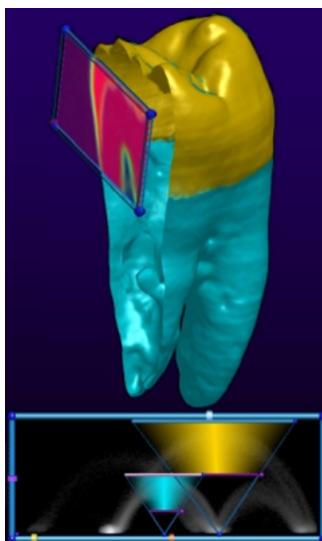








- Multidimensional transfer functions
- Extraction of two boundaries
- Triangle function in histogram

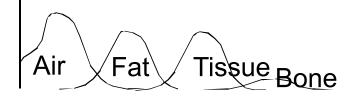


Overview

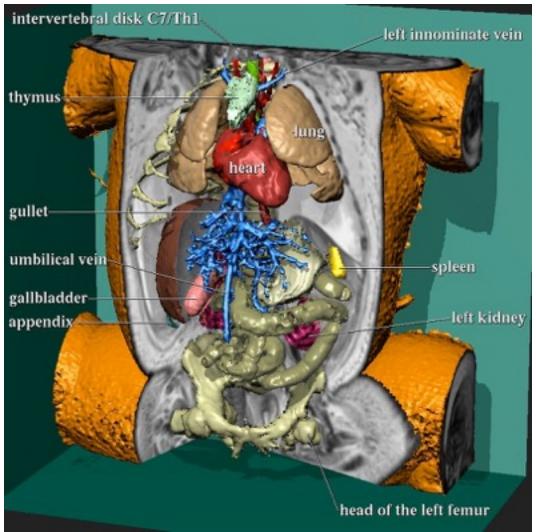
- Basic strategies
- Function plots and height fields
- Isolines
- Color coding
- Volume visualization (overview)
- Classification
- Segmentation
- Volumetric illumination
- Scalar Data in High-D

Segmentation

- Different features with same value
 - Example CT: different organs have similar X-ray absorption
 - Classification cannot be distinguished
- Label voxels indicating a type
- Segmentation = pre-processing
- Semi-automatic process



Segmentation



Anatomic atlas

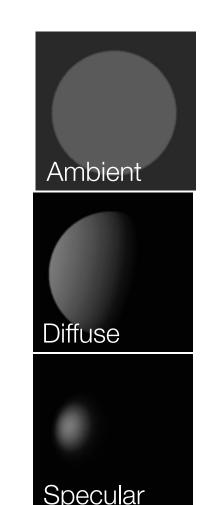
Overview

- Basic strategies
- Function plots and height fields
- Isolines
- Color coding
- Volume visualization (overview)
- Classification
- Segmentation
- Volumetric illumination
- Scalar Data in High-D

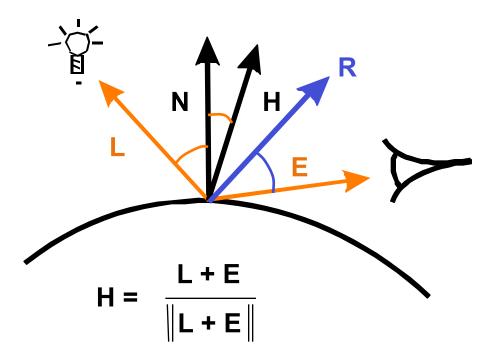
- Illumination:
 - Simulate reflection of light
 - Simulate effect on color
- We want to make use of the human visual system's ability to efficiently deal with illuminated objects



- Review of the Phong illumination model
 - Ambient light + diffuse light + specular light
- Ambient light: $C = k_a C_a O_d$
 - k_a is ambient contribution
 - C_a is color of ambient light
 - O_d is diffuse color of object
- Diffuse light: $C = k_d C_p O_d \cos(\theta)$
 - k_d is diffuse contribution
 - C_p is color of point light
 - O_d is diffuse color of object
 - $-\cos(\theta)$ is angle of incoming light
- Specular light: $C = k_s C_p O_s \cos^n(\sigma)$
 - k_s is specular contribution
 - C_p is color of point light
 - $\cos(\sigma)$ is angle of reflected light and eye
 - n is the specular exponent



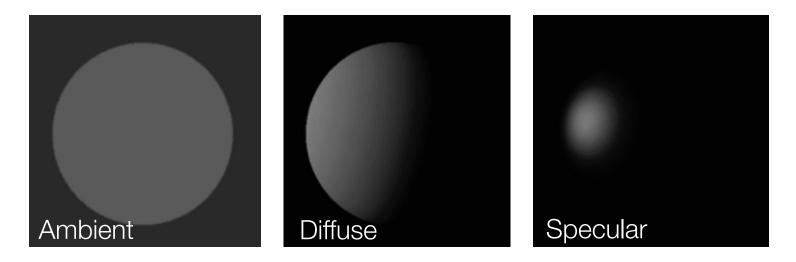
- $\cos(\theta) = \mathbf{R} \cdot \mathbf{E}$
- $cos(\theta_1) = \mathbf{N} \cdot \mathbf{H}$ (Blinn-Phong)



20

40

60

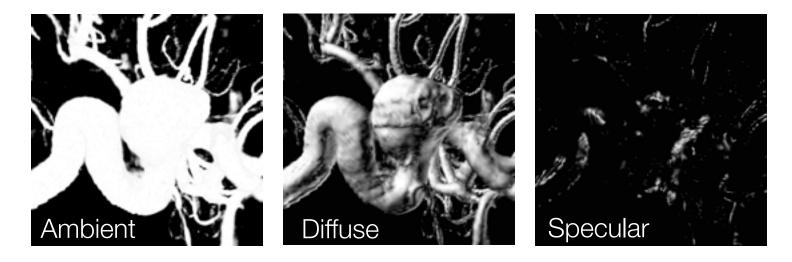


$$k_{a} = 0.1$$

$$k_{d} = 0.5$$

$$k_{s} = 0.4$$

Phong model

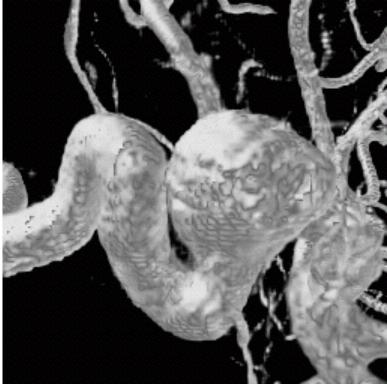


$$k_{a} = 0.1$$

$$k_{d} = 0.5$$

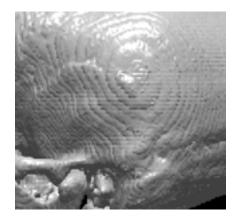
$$k_{s} = 0.4$$

- What is the normal vector in a scalar field?
- Use the gradient!
- Gradient is perpendicular to isosurface (direction of largest change)
- Numerical computation of the gradient:
 - Central difference
 - Intermediate difference (forward/backward difference)
 - Sobel operator (3×3 kernel for each partial derivative)

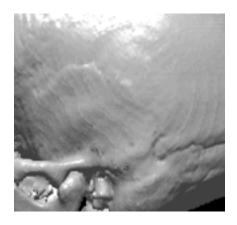


Central differences

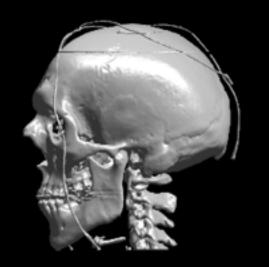
Intermediate differences

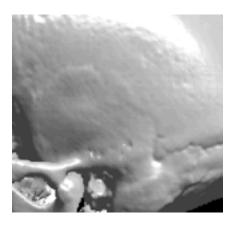


Intermediate differences



Central differences



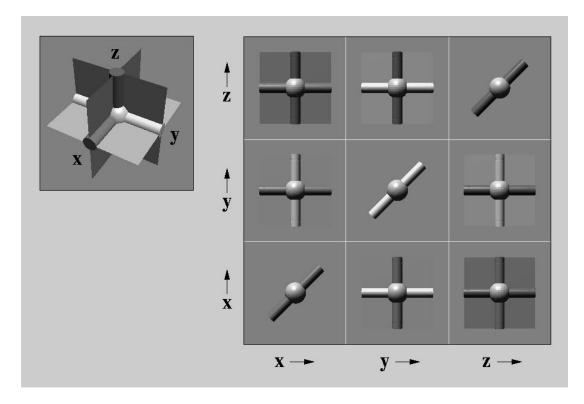


Sobel operator

Overview

- Basic strategies
- Function plots and height fields
- Isolines
- Color coding
- Volume visualization (overview)
- Classification
- Segmentation
- Volumetric illumination
- Scalar Data in High-D

Scalar Data in High-D



van Wijk and van Liere 1993

