Direct Volume Rendering

3D Image Processing
Torsten Möller / Alireza Ghane

© Weiskopf/Machiraju/Möller

Overview

(a)

(b)

Motivation

Motivation

Model

- The data is considered to represent a semi-transparent lightemitting medium
- Also gaseous phenomena can be simulated
- Approaches are based on the laws of physics (emission, absorption, scattering)
- The volume data is used as a whole (look inside, see all interior structures)

Key-ideas

- Light!
- Transfer functions
- discrete data vs. continuous phenomena (i.e. interpolation)
- Projection: 3D $\leadsto 2 \mathrm{D}$
- Illusion of interaction (speed!)

Overview

- Light: Volume rendering equation
- Discretized: Compositing schemes
- Ray casting
- Acceleration techniques for ray casting
- Texture-based volume rendering
- Shear-warp factorization
- Splatting
- Fourier Volume Rendering
- Cell projection (Shirley-Tuchman)

Readings

- The Visualization Handbook:
- Chapter 7 (Overview of Volume Rendering)
- Chapter 8 (Volume Rendering Using Splatting)
- Chapter 10 (Pre-Integrated Volume Rendering)
- Chapter 11 (Hardware-Accelerated Volume Rendering)
- Engel et al: Real-time Volume Graphics
- Chapter 1 (Theoretical Background and Basic Approaches)
- Chapter 3 (Basic GPU-Based Volume Rendering)
- Chapter 7 (GPU-Based Ray Casting)
- Chapter 9 (Improving Image Quality)

Readings cont.

- Malzbender: "Fourier volume rendering", ACM Transactions on Graphics (TOG), vol. 12(3), July 1993, Pages 233-250
- Totsuka, Levoy, "Frequency domain volume rendering", SIGGRAPH '93, Pages 271-278

Volume Rendering Equation

- Goal: physical model for volume rendering
- Emission-absorption model
- Density-emitter model [sabelal 19es)
- Leads to volume rendering equation
- More general approach:
- Linear transport theory
- Equation of transfer for radiation
- Basis for all rendering methods
- Important aspects:
- Absorption
- Emission
- Scattering
- Participating medium

Volume Rendering Equation

- Contributions to radiation at a single position:
- Absorption

Absorption

outscattering

emission

inscattering

Volume Rendering Equation

- Assumptions:
- Based on a physical model for radiation
- Geometrical optics
- Neglect:
- Diffraction
- Interference
- Wave-character
- Polarization
- Interaction of light with matter at the macroscopic scale
- Describes the changes of specific intensity due to absorption, emission, and scattering
- Based on energy conservation
- Expressed by equation of transfer

Steady State

- Accumulation = flow through boundaries
- flow out of boundaries
+ generation within system
- absorption within system

Streaming + Absorbance + Outscattering $=$ Emission + Inscattering

(«) vveiskupi/Iviaciniaju/IViUnei

Absorption

- The reduction of radiance due to conversion of light to another form of energy (e.g. heat)
- σ_{a} : absorption cross section - probability density that light is absorbed per unit distance traveled

$$
\begin{aligned}
& L_{0}(p, \omega)-L_{i}(p,-\omega)=d L_{0}(p, \omega)=-\sigma_{a} L_{i}(p,-\omega) d t
\end{aligned}
$$

© Weiskopf/Machiraju/Möller

Absorption

Emission

- Energy that is added to the environment from luminous particles
- L_{ve} : emitted light - not depending on incoming light!

$$
d L_{o}(p, \omega)=L_{v e}(p,-\omega) d t
$$

© Weiskopf/Machiraju/Möller

Emission

Out-scattering + extinction

- Light heading in one direction is scattered to other directions due to collisions with particles
- σ_{s} : scattering coefficient - probability of an out-scattering event to happen per unit distance $d L_{o}(p, \omega)=-\sigma_{s}(p, \omega) L_{i}(p,-\omega) d t$

Out-scattering + extinction

- Combining absorption and out-scattering:

$$
\begin{aligned}
\sigma_{t}(p, \omega) & =\sigma_{s}(p, \omega)+\sigma_{a}(p, \omega) \\
\frac{d L_{o}(p, \omega)}{d t} & =-\sigma_{t}(p, \omega) L_{i}(p,-\omega)
\end{aligned}
$$

- It's solution: $T_{r}\left(p \rightarrow p^{\prime}\right)=e^{\left.-\int_{0}^{t} \sigma_{1}(p+t, \omega,)^{2}\right) t}$
- T_{r} - beam transmittance
- d - distance between p and p'
- ω - unit direction vector

$$
L_{o}(p, \omega)
$$

© Weiskopf/Machiraju/Möller
p

Out-scattering + extinction

- Properties of T_{r} :
- In vaccum

$$
T_{r}\left(p \rightarrow p^{\prime}\right)=1
$$

- Multiplicative

$$
T_{r}\left(p \rightarrow p^{\prime \prime}\right)=T_{r}\left(p \rightarrow p^{\prime}\right) \cdot T_{r}\left(p^{\prime} \rightarrow p^{\prime \prime}\right)
$$

- Beer's law (in homogeneous medium)

$$
T_{r}\left(p \rightarrow p^{\prime}\right)=e^{-\sigma_{t} d}
$$

- Optical thickness between two points:

$$
\tau\left(p \rightarrow p^{\prime}\right)=\int_{0}^{d} \sigma_{t}(p+t \omega, \omega) d t
$$

- Often used:

$$
T_{r}\left(p \rightarrow p^{\prime}\right) \approx 1-\tau\left(p \rightarrow p^{\prime}\right)
$$

© Weiskopf/Machiraju/Möller

In-scattering

- Increased radiance due to scattering from other directions
- Ignore inter-particle reactions
- S - source term: total added radiance per unit distance

© Weiskopf/Machiraju/Möller

In-scattering

$$
S(p, \omega)=L_{v e}(p, \omega)+\sigma_{s}(p, \omega) \int_{S^{2}} p\left(p,-\omega^{\prime} \rightarrow \omega\right) L_{i}\left(p, \omega^{\prime}\right) d \omega^{\prime}
$$

- S determined by
- Volume emission
- p - phase function: describes angular distribution of scattered radiation (volume analog of BSDF)

$$
\int_{S^{2}} p\left(\omega \rightarrow \omega^{\prime}\right) d \omega^{\prime}=1
$$

- p normalized to one:

In-scattering

Overview

- Light: Volume rendering equation
- Discretized: Compositing schemes
- Ray casting
- Acceleration techniques for ray casting
- Texture-based volume rendering
- Shear-warp factorization
- Splatting
- Fourier Volume Rendering
- Cell projection (Shirley-Tuchman)

Compositing

- Compositing = iterative computation of discretized volume integral
- Traversal strategies
- Front-to-back
- Back-to-front

$$
C^{\text {out }}=C^{\text {in }} \times(1-\alpha)+C
$$

- Directly derived from discretized integral
- Just different notation:
- Colors C and opacity α are assigned with transfer function

Back-to-front

- Over operator [Porter \& Duff 1984]
- Used, e.g., in texture-based volume rendering
- Compositing equation:

© Weiskopf/Machiraju/Möller

$C(N)^{\text {out }}$

Front-to-back

- Needs to maintain $\alpha^{\text {in }}$
- Most often used in ray casting
- Compositing equation:

$$
\begin{aligned}
& C^{\text {out }}=C^{\text {in }}+\left(1-\alpha^{\text {in }}\right) C \\
& \alpha^{\text {out }}=\alpha^{\text {in }}+\left(1-\alpha^{\text {in }}\right) \alpha
\end{aligned}
$$

Compositing

- Associated colors
- Color contributions are already weighted by their corresponding opacity
- Also called pre-multiplied colors
- Non-associated colors: $C \rightarrow C \alpha$
- Just substitute in compositing equations
- Yields the same results as associated colors (on a cont. level)
- Differences occur when combined with interpolation + postclassification
- Ex.: back-to-front compositing with non-associated colors:

$$
C^{\text {out }}=(1-\alpha) C^{\text {in }}+C \alpha
$$

- Standard OpenGL blending for semi-transparent surfaces

Compositing

- So far: accumulation scheme
- Variations of composition schemes
- First
- Average
- Maximum intensity projection

Compositing

Compositing

- Compositing: First
- Extracts isosurfaces Intensity

© Weiskopf/Machiraju/Möller

Compositing

- Compositing: Average
- Produces basically an X-ray picture Intensity

Compositing

- Maximum Intensity Projection (MIP)
- Often used for MR or CT angiograms
- Good to extract vessel structures

Intensity

© Weiskopf/Machiraju/Möller

Compositing

- Compositing: Accumulate
- Emission-absorption model
- Make transparent layers visible (see classif.) Intensity

© Weiskopf/MachirajuRepth

Compositing

- Note: First and average are special cases of accumulate

Overview

- Light: Volume rendering equation
- Discretized: Compositing schemes
- Ray casting
- Acceleration techniques for ray casting
- Texture-based volume rendering
- Shear-warp factorization
- Splatting
- Fourier Volume Rendering
- Cell projection (Shirley-Tuchman)

Ray Casting

- Similar to ray tracing in surface-based computer graphics
- In volume rendering we only deal with primary rays; hence: ray casting
- Natural image-order technique
- As opposed to surface graphics - how do we calculate the ray/surface intersection?

Ray Casting

- Since we have no surfaces - carefully step through volume
- A ray is cast into the volume, sampling the volume at certain intervals
- Sampling intervals are usually equidistant, but don't have to be (e.g. importance sampling)
- At each sampling location, a sample is interpolated / reconstructed from the voxel grid
- Popular filters are: nearest neighbor (box), trilinear, or more sophisticated (Gaussian, cubic spline)
- First: Ray casting in uniform grids
- Implicit topology
- Simple interpolation schemes

Ray Casting

- Volumetric ray integration:
- Tracing of rays
- Accumulation of color and opacity along ray: compositing

Ray Casting

© Weiskopf/Machiraju/Möller

Ray Casting

© Weiskopf/Machiraju/Möller

Ray Casting

volumetric compositing

© Weiskopf/Machiraju/Möller

Ray Casting

- How is color and opacity at each integration step determined?
- Opacity and (emissive) color in each cell according to classification
- Additional color due to external lighting: according to volumetric shading (e.g. Blinn-Phong)
- No shadowing, no secondary effects
- Implementations
- Traditional CPU implementation
- straightforward, very efficient GPU implemenations
- Fragment shader loops (Shader Model 3 GPUs)
© Weiskopf/Machiraju/Möller

Determining color at each step

- Pre-shading
- Assign color values to original function values
- Interpolate between color values
- Post-shading
- Interpolate between scalar values
- Assign color values to interpolated scalar values
transfer functions

voxels

Pre-integrated Rendering

Slice-by-slice
Slab-by-slab

Pre-integration of all combinations

Pre-integrated Rendering

- Assumptions:
- Linear interp. of scalar values within a slab
- Constant length of a slab: L
- Only an approximation, but gives good results in most cases
- Pre-computation of all potential contrib. from a slab $s_{L}(t)=s_{b}+\frac{t}{L}\left(s_{f}-s_{b}\right) \quad$ (linear interpolation within a slab)

Pre-integrated Rendering

- Quality comparison

128 Slices
128 Slabs

Pre-integrated Rendering

- Quality comparison

128 Slices
128 Slabs

Overview

- Light: Volume rendering equation
- Discretized: Compositing schemes
- Ray casting
- Acceleration techniques for ray casting
- Texture-based volume rendering
- Shear-warp factorization
- Splatting
- Fourier Volume Rendering
- Cell projection (Shirley-Tuchman)

Acceleration Techniques for Ray Casting

- Problem: ray casting is time consuming
- Idea:
- Neglect "irrelevant" information to accelerate the rendering process
- Exploit coherence
- Early-ray termination
- Idea: colors from faraway regions do not contribute if accumulated opacity is to high
- Stop traversal if contribution of sample becomes irrelevant
- User-set opacity level for termination
- Front-to-back compositing

Acceleration Techniques for Ray Casting

- Space leaping
- Skip empty cells
- Homogeneity-acceleration
- Approximate homogeneo
with fewer sample points

Acceleration Techniques for Ray Casting

- Hierarchical spatial data structure
- Octree
- Mean value and variance stored in nodes of octree

2	2	2	2	2	2	2	2		2	2	2	2	2	2	2
2	2	2	2	2	2	2	2			2	2	2	2	2	2
2	2	2	2	2	2	2	2	2		\&	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2			2	2	2	2
3	3	4	4	4	4	4		4	4	4	4			2	2
3	3	4												2	2
3	3	4								3	3	2			2
3	3	4	4					4		3	3	2	2		
3	3	4			4	4		3				2	2	2	2
3	3	4		4		4		3				2	2	2	2
3	3	3	3	3	3	4							2	2	2
3	3	3	3	3	3	4		4			3			2	,
2	2	2	2	3	3	4						2			
2	2	2	2	3	3	4	4	2	2	2		2	2	2	\square
2	2	2	2	3	3	3	3	2	2	2	2			2	2
2	2	2	2	3	3	3	3	2	2	2	2			2	2

Acceleration Techniques for Ray Casting

- Modern GPUs can be used for ray casting
- Essential idea
- Fragment shader loop
- Implements ray marching
- Benefits from
- High processing speed of GPUs
- Built-in trilinear interpolation in 3D textures
- Requires Pixel Shader 3.0 compliant GPUs

Overview

- Light: Volume rendering equation
- Discretized: Compositing schemes
- Ray casting
- Acceleration techniques for ray casting
- Texture-based volume rendering
- Shear-warp factorization
- Splatting
- Fourier Volume Rendering
- Cell projection (Shirley-Tuchman)

Texture-Based Volume Rendering

- Object-space approach
- Based on graphics hardware:
- Rasterization
- Texturing
- Blending
- Proxy geometry because there are no volumetric primitives in graphics hardware
- Slices through the volume
- Supported by older graphics hardware
- No need for (advanced) fragment shaders

Texture-Based Volume Rendering

- Slice-based rendering
object (color, opacity)

color

opacity

Similar to ray casting with simultaneous rays

Texture-Based Volume Rendering

| scene
 description | geometry
 processing | rasterization |
| :--- | ---: | ---: | | fragment |
| :---: |
| operations |

rendering pipeline

Texture-Based Volume Rendering

- Proxy geometry
- Stack of texture-mapped slices
- Generate fragments
- Most often back-to-front traversal

Texture-Based Volume Rendering

-2D textured slices

- Object-aligned slices
- Three stacks of 2D textures
- Bilinear interpolation

Texture-Based Volume Rendering

- Stack of 2D textures:
- Artifacts when stack is viewed close to 45 degrees
- Locations of sampling points may change abruptly

Texture-Based Volume Rendering

-3D textured slices

- View-aligned slices
- Single 3D texture
- Trilinear interpolation

Texture-Based Volume

Rendering

- 3D texture:
- Needs support for 3D textures
- Data set stored only once (not 3 stacks!!)
- Trilinear interpolation within volume

- Slower
- Good image quality
- Constant Euclidean distance between slices along a light ray
- Constant sampling distance (except for perspective projection)

Texture-Based Volume Rendering

- 3D texture:
- No artifacts due to inappropriate viewing angles
- Increase sampling rate \rightarrow more slices
- Easy with 3D textures

Texture-Based Volume Rendering

2D textures axis-aligned

3D texture view-aligned

Texture-Based Volume Rendering

- Representation of volume data by textures
- Stack of 2D textures
- 3D texture
- Typical choices for texture format:
- Luminance and alpha
- Pre-classified (pre-shaded) gray-scale volume rendering
- Transfer function is already applied to scalar data
- Change of transfer func. requires complete redefinition of texture data
- RGBA
- Pre-classified (pre-shaded) colored volume rendering
- Transfer function is already applied to scalar data
- Luminance
- Only the actual scalar data is stored
- Best solution! © Weiskopf/Machiraju/Möller

Texture-Based Volume Rendering

- Post-classification?
- Data set represented by luminance texture (single channel)
- Dependent texture lookup in texture for color table
- Fragment or pixel shader program

Texture-Based Volume Rendering

- Compositing:
- Works on fragments
- Per-fragment operations
- After rasterization
- Blending of fragments via over operator
- OpenGL code for over operator glEnable (GL_BLEND); glBlendFunc (GL_ONE, GL_ONE_MINUS_SRC_ALPHA) ;
- Generate fragments:
- Render proxy geometry
- Slice
- Simple implementation: quadrilateral
- More sophisticated: triangulated intersection surface between slice plane and boundary of the volume data set
© Weiskopf/Machiraju/Möller

Texture-Based Volume Rendering

- Advantages of texture-based rendering:
- Supported by consumer graphics hardware
- Fast for moderately sized data sets
- Interactive explorations
- Surface-based and volumetric representations can easily be combined
\rightarrow mixture with opaque geometries
- Disadvantages:
- Limited by texture memory
\rightarrow Solution: bricking at the cost of additional texture downloads to the graphics board
- Brute force: complete volume is represented by slices
- Rasterization speed + memory access can be problematic

Overview

- Light: Volume rendering equation
- Discretized: Compositing schemes
- Ray casting
- Acceleration techniques for ray casting
- Texture-based volume rendering
- Shear-warp factorization
- Splatting
- Fourier Volume Rendering
- Cell projection (Shirley-Tuchman)

Shear-Warp Factorization

- Object-space method
- Slice-based technique
- Fast object-order rendering
- Accelerated volume visualization via shear-warp factorization [Lacrute \& Levoy 1994]
- CPU-based implementation

Shear-Warp Factorization

- General goal: make viewing rays parallel to each other and perpendicular to the image
- This is achieved by a simple shear

- Parallel projection (orthographic camera) is assumed

Shear-Warp Factorization

- Algorithm:
- Shear along the volume slices
- Projection + comp. to get intermediate image
- Warping transformation of intermediate image to get correct result

© Weiskopf/Machiraju/Möller

Shear-Warp Factorization

- For one scan linel. shear \&

Shear-Warp Factorization

- Mathematical description of the shear-warp factorization
- Splitting the viewing transformation into separate parts
$\mathbf{M}_{\text {view }}=\mathbf{P} \times \boldsymbol{S} \times \mathbf{M}_{\text {warp }}$
- $\mathbf{M}_{\text {view }}=$ general viewing matrix
- P = permutation matrix: transposes coord. system in order to make the z-axis the principal viewing axis
- S = transforms volume into sheared object space
- $\mathbf{M}_{\text {warp }}=$ warps sheared object coordinates into image coordinates
- Needs 3 stacks of the volume along 3 principal axes

Shear-Warp Factorization

- Shear for parallel and perspective proj.

$$
S_{\mathrm{par}}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \div \\
s_{x} & s_{y} & 1 & 0 \div \\
0 & 0 & 0 & 1 \dot{\bar{j}}
\end{array} \quad S_{\text {persp }}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
s_{x}^{\prime} & s_{y}^{\prime} & 1 & s_{w}^{\prime} \div \\
0 & 0 & 0 & 1 \\
\hline \dot{广}
\end{array}\right.\right.
$$

shear perpendicular to z-axis
perspective projection

Shear-Warp Factorization

- Algorithm (detailed):
- Transform volume to sheared object space by translation and resampling
- Project volume into 2D intermediate image in sheared object space
- Composite resampled slices front-to-back
- Transform intermediate image to image space using 2D warping
- In a nutshell:
- Shear (3D)
- Project (3D \rightarrow 2D)
- Warp (2D)

Shear-Warp Factorization

- Three properties
- Scan lines of pixels in the intermediate image are parallel to scan lines of voxels in the volume data
- All voxels in a given voxel slice are scaled by the same factor
- Parallel projections only:

Every voxel slice has the same scale factor

- Scale factor for parallel projections
- This factor can be chosen arbitrarily
- Choose a unity scale factor so that for a given voxel scan line there is a one-to-one mapping between voxels and intermediate image pixels

Shear-Warp Factorization

- Highly optimized algorithm for
- Parallel projection
- Fixed opacity transfer function
- Optimization of volume data (voxel scan lines)
- Run-length encoding of voxel scan lines
- Skip runs of transparent voxels
- Transparency and opaqueness determined by user-defined opacity threshold
- Optimization in intermediate image:
- Skip opaque pixels in intermediate image (early-ray termination)
- Store (in each pixel) offset to next non-opaque pixel

Shear-Warp Factorization

- Combining both ideas:
- First property (parallel scan lines for pixels and voxels): Voxel scan lines in sheared volume are aligned with pixel scan lines in intermediate
- Both can be traversed in scan line order simultaneously

Shear-Warp Factorization

- Coherence in voxel space:
- Each slice of the volume is only translated
- Fixed weights for bilinear interpolation within voxel slices
- Computation of weights only once per frame
- Final warping:
- Works on composited intermediate image
- Warp: affine image warper with bilinear filter
- Often done in hardware: render a quadrilateral with intermediate 2D image being attached as 2D texture

Shear-Warp Factorization

- Parallel projection:
- Efficient reconstruction
- Lookup table for shading
- Lookup table for opacity correction (thickness)
- Three RLE of the actual volume (in x, y, z)
- Perspective projection:
- Similar to parallel projection
- Difference: voxels need to be scaled
- Hence more then two voxel scan lines needed for one image scan line

Overview

- Light: Volume rendering equation
- Discretized: Compositing schemes
- Ray casting
- Acceleration techniques for ray casting
- Texture-based volume rendering
- Shear-warp factorization
- Splatting
- Fourier Volume Rendering
- Cell projection (Shirley-Tuchman)

Splatting

- Splatting westover 1990]
- Object-order method
- Project each sample (voxel) from the volume into the image plane
splat

© Weiskopf/Machiraju/Möller

Splatting

- Ideally we would reconstruct the continuous volume (cloud) using the interpolation kernel w (spherically symmetric):

$$
f_{r}(v)=\sum_{k} w\left(v-v_{k}\right) f\left(v_{k}\right)
$$

- Analytic integral along a ray r for intensity (emission):

$$
I(p)=\int f_{r}(p+r) d r=\int \sum_{k} w\left(p+r-v_{k}\right) f\left(v_{k}\right) d r
$$

- Rewrite:

$$
I(p)=\sum_{k} f\left(v_{k}\right) \times \int w\left(p+r-v_{k}\right) d r
$$

Splatting

- Discretization via 2D splats

$$
\operatorname{Splat}(x, y)=\int w(x, y, z) d z
$$

from the original 3D kernel

- The 3D rotationally symmetric filter kernel is integrated to produce a 2D filter kernel

Splatting

- Draw each voxel as a cloud of points (footprint) that spreads the voxel contribution across multiple pixels
- Footprint: splatted (integrated) kernel
- Approximate the 3D kernel $h(x, y, z)$ extent by a sphere

Splatting

- Larger footprint increases blurring and used for high pixel-to-voxel ratio
- Footprint geometry
- Orthographic projection: footprint is
 independent of the view point
- Perspective projection: footprint is elliptical
- Pre-integration of footprint
- For perspective projection: additional
 computation of the orientation of the ellipse

Splatting

- Volume = field of 3D interpolation kernels - One kernel at each grid voxel
- Each kernel leaves a 2D footprint on screen
- Weighted footprints accumulate into image
voxel kernels

Splatting

- Volume = field of 3D interpolation kernels - One kernel at each grid voxel
- Each kernel leaves a 2D footprint on screen
- Weighted footprints accumulate into image
voxel kernels

Splatting

- Volume = field of 3D interpolation kernels - One kernel at each grid voxel
- Each kernel leaves a 2D footprint on screen
- Weighted footprints accumulate into image
voxel kernels

Splatting

- Voxel kernels are added within sheets
- Sheets are composited front-to-back
- Sheets = volume slices most perpendicular to the image plane (analogously to stack of slices)
volume slices

volume slices

Splatting

- Core algorithm for splatting
volume slices
- Volume
- Represented by voxels
- Slicing
- Image plane:
- Sheet buffer
- Compositing buffer

Splatting

- Add voxel kernels within first sheet

volume slices

Splatting

- Transfer to compositing buffer

volume slices

Splatting

- Add voxel kernels within second sheet volume slices

Splatting

- Composite sheet with compositing buffer volume slices

Splatting

- Add voxel kernels within third sheet volume slices

Splatting

- Composite sheet with compositing buffer volume slices

Splatting

- Inaccurate compositing
- Problems when splats overlap
- Incorrect mixture of
problematic
- Integration (3D kernel to 2D splat) and
- Compositing

Splatting

- Simple extension to volume data without grids
- Scattered data with kernels
- Example: SPH (smooth particle hydrodynamics)
- Needs sorting of sample points

Overview

- Light: Volume rendering equation
- Discretized: Compositing schemes
- Ray casting
- Acceleration techniques for ray casting
- Texture-based volume rendering
- Shear-warp factorization
- Splatting
- Fourier Volume Rendering
- Cell projection (Shirley-Tuchman)

Fourier Volume Rendering

- Tom Malzbender 1993
- Totsuka, Levoy 1993
- non-"traditional" method
- rendering in the Fourier domain
- based on Fourier Projection Slice Theorem
- very efficient
- lots of accuracy problems

Projection Slice Theorem

- Relates a slice of the Fourier transform to an integral in one direction in spatial domain

FVR - Basic Algorithm

- Preprocessing:
- pre-multiply spatial domain
- zero-pad the volume
- compute Fourier transform
- Actual Algorithm
- compute viewing angle
- extract 2D slice
- inverse 2D Fourier transform of slice

FVR - Resampling revisited

Original function
Sampled function

FVR - Pre-multiplication

- Extracting slice requires a resampling step
- what impact has sampling in Frequency domain to the spatial domain??

FVR - Pre-multiplication (2)

- Or mathematically:
- Reconstruction = convolution with an interpolation filter H :
- $F_{h}(w)=F(k)^{\star} H(s)$
- and in spatial domain:
- $f_{h}(x)=f(x) . h(x)$

FVR - Pre-multiplication (3)

© Weiskopf/Machiraju/Möller

FVR - zero-padding

- Separates the spatial replicas further
- Decreases artifacts in spatial domain
- zero-padded function:

FVR - Efficiency

- Typical Fourier Transform $=\mathrm{O}\left(\mathrm{N}^{3 *} \mathrm{~N}^{3}\right)$
- Fast Fourier Tranform $=\mathrm{O}\left(\mathrm{N}^{3 *} \log \mathrm{~N}\right)$
- Hence:
- pre-processing $=\mathrm{O}\left(\mathrm{N}^{3 *} \operatorname{logN}\right)$
- slicing $=\mathrm{O}\left(\mathrm{N}^{2}\right)$
- inverse Fourier Transform (slice) =
$\mathrm{O}\left(\mathrm{N}^{2 *} \log \mathrm{~N}\right)$
- other rendering algorithm $\mathrm{O}\left(\mathrm{N}^{3}\right)$

FVR - Efficiency (2)

© Weiskopf/Machiraju/Möller

FVR - Depth-Shading

- Basic algorithm produces x-ray type images
- no depth information is conveyed
- depth incoding: f(x).d(x)
- Fourier Transform (with interpolation):
- $\mathrm{F}(\mathrm{w})^{*} \mathrm{D}(\mathrm{w})^{*} \mathrm{H}(\mathrm{w})$
- Hence pre-multiply H with D!

FVR - Depth-Shading (2)

- Linear depth cueing:

$$
d_{l}(x)=C_{c u e}(V \times x)+C_{a v g}
$$

- Fourier Transform
- Combined filter:

$$
\begin{aligned}
H^{\prime}(\omega) & =D_{l}(\omega) * H(\omega) \\
& =-\frac{C_{\text {cue }}}{i 2 \pi}(V \times \nabla H(\omega))+C_{\text {avg }} H(\omega)
\end{aligned}
$$

FVR - Ambient-Shading

- Typical ambient component: $C_{a m b} L_{a m b} O_{c}$
- C - color
- L - constant
- O - object color
- approximation: $\quad C_{a m b} L_{\text {amb }} f(x)$
- Fourier transform:

$$
C_{a m b} L_{a m b} F\left\{f(x) \times p_{m}(x)\right\} * H(\omega)
$$

FVR - Diffuse-Shading

- Typical diffuse component:

$$
C_{d i f} L_{d i f} O_{c} \max (0, N \times L)
$$

- N - normal vector
- L - light vector
- doesn't have a simple Fourier transform
- approximation - illumination by hemisphere:

$$
C_{d i f} L_{d i f} \frac{1}{2} \left\lvert\, \nabla f(x)\left(1+\frac{\nabla f(x) \times L}{\mid \nabla f(x)} \stackrel{\dot{\dot{\prime}}}{\dot{j}}\right.\right.
$$

FVR - Diffuse-Shading (2)

- approximation:

$$
\left.\left.C_{d i f} L_{d i f} \frac{1}{2} \right\rvert\, \nabla f(x)\right)\left(1+\frac{\nabla f(x) \times L}{|\nabla f(x)|} \frac{)}{\dot{j}}\right.
$$

- Fourier transform:

$$
C_{d i f} L_{d i f}\left(\begin{array}{l}
\frac{1}{2} F\left\{\mid \nabla f(x) \times p_{m}(x)\right\} * H(\omega)+\quad \quad \stackrel{!}{\vdots} \\
+i \pi(\omega \times L) F\left\{f(x) \times p_{m}(x)\right\} * H(\omega) \dot{广}
\end{array}\right.
$$

FVR - Diffuse-Shading (3)

$$
\mathcal{F}\left\{f(\boldsymbol{x}) p_{m}(\boldsymbol{x})\right\} \quad \mathcal{F}\left\{|\nabla f(\boldsymbol{x})| p_{m}(\boldsymbol{x})\right\}
$$

© Weiskopf/Machiraju/Möller

Overview

- Light: Volume rendering equation
- Discretized: Compositing schemes
- Ray casting
- Acceleration techniques for ray casting
- Texture-based volume rendering
- Shear-warp factorization
- Splatting
- Fourier Volume Rendering
- Cell projection (Shirley-Tuchman)

Cell Projection

- For unstructured grids
- Alternative to ray casting (Garrity's alg.)
- Projected Tetrahedra (PT) algorithm
[P. Shirley, A. Tuchman: A polygonal approximation to direct scalar volume rendering, Volvis 1990, p. 63-70]

Cell Projection

- Basic idea

Blending

Cell Projection

- Spatial sorting for all tetrahedra in a grid
- Back-to-front or front-to-back strategies possible
- Compositing is not commutative
- MPVO algorithm: Meshed Polyhedra Visibility

Ordering [P. Williams: Visibility Ordering Meshed Polyhedra, ACM Transactions on Graphics, 11(2), 1992, p. 103-126]

- Only for acyclic, convex grids

convex

non-convex aju/Möller

Cell Projection

- Decomposition of non-tetrahedral unstructured grids into tetrahedra
- PT can be applied for all types of unstructured grids

Cell Projection

- Alternative to working directly on unstructured grids
- Resampling approaches, adaptive mesh refinement (AMR)

