
© Weiskopf/Machiraju/Möller

Direct Volume Rendering

3D Image Processing 
Torsten Möller / Alireza Ghane

© Weiskopf/Machiraju/Möller 2

Overview
• 2D visualization  
 slice images 
 (or multi-planar  
 reformating MPR)
• Indirect 
 3D visualization  
 isosurfaces  
 (or surface-shaded 
 display SSD)

• Direct  
 3D visualization 
 (direct volume  
 rendering DVR)

© Weiskopf/Machiraju/Möller

Motivation

3Callahan, et al. CS+E, 2008

© Weiskopf/Machiraju/Möller

Motivation

4

© Weiskopf/Machiraju/Möller
© Machiraju/Möller

Motivation

© Weiskopf/Machiraju/Möller 6

Model

• The data is considered to  
represent a semi-transparent light-
emitting medium
– Also gaseous phenomena can be simulated

• Approaches are based on the laws of
physics (emission, absorption, scattering)

• The volume data is used as a whole 
 (look inside, see all interior structures)

© Weiskopf/Machiraju/Möller

Key-ideas

• Light!
• Transfer functions
• discrete data vs. continuous phenomena  

(i.e. interpolation)
• Projection: 3D ⟾ 2D
• Illusion of interaction (speed!)

7

© Weiskopf/Machiraju/Möller 8

Overview

• Light: Volume rendering equation
• Discretized: Compositing schemes
• Ray casting

– Acceleration techniques for ray casting
• Texture-based volume rendering
• Shear-warp factorization
• Splatting
• Fourier Volume Rendering
• Cell projection (Shirley-Tuchman)

© Weiskopf/Machiraju/Möller 9

Readings
• The Visualization Handbook:

– Chapter 7 (Overview of Volume Rendering)
– Chapter 8 (Volume Rendering Using Splatting)
– Chapter 10 (Pre-Integrated Volume Rendering)
– Chapter 11 (Hardware-Accelerated Volume Rendering)

• Engel et al: Real-time Volume Graphics
– Chapter 1 (Theoretical Background and Basic

Approaches)
– Chapter 3 (Basic GPU-Based Volume Rendering)
– Chapter 7 (GPU-Based Ray Casting)
– Chapter 9 (Improving Image Quality)

© Weiskopf/Machiraju/Möller

Readings cont.

• Malzbender: “Fourier volume rendering”,
ACM Transactions on Graphics (TOG),
vol. 12(3), July 1993, Pages 233-250

• Totsuka, Levoy, “Frequency domain
volume rendering”, SIGGRAPH '93,
Pages 271-278

10

© Weiskopf/Machiraju/Möller 11

Volume Rendering Equation
• Goal: physical model for volume rendering

– Emission-absorption model
– Density-emitter model [Sabella 1988]

– Leads to volume rendering equation
• More general approach:

– Linear transport theory
– Equation of transfer for radiation
– Basis for all rendering methods

• Important aspects:
– Absorption
– Emission
– Scattering
– Participating medium

© Weiskopf/Machiraju/Möller 12

Volume Rendering Equation

• Contributions to radiation at a single
position:
– Absorption
– Emission
– Scattering

© Weiskopf/Machiraju/Möller 13

Volume Rendering Equation
• Assumptions:

– Based on a physical model for radiation
– Geometrical optics

• Neglect:
– Diffraction
– Interference
– Wave-character
– Polarization

• Interaction of light with matter at the macroscopic
scale
– Describes the changes of specific intensity due to

absorption, emission, and scattering
• Based on energy conservation
• Expressed by equation of transfer

© Weiskopf/Machiraju/Möller
© Machiraju/Möller

Steady State
• Accumulation = 

flow through boundaries 
- flow out of boundaries 
+ generation within system 
- absorption within system

© Weiskopf/Machiraju/Möller

Absorption
• The reduction of radiance due to

conversion of light to another form of
energy (e.g. heat)

• σa: absorption cross section - probability
density that light is absorbed per unit
distance traveled

© Weiskopf/Machiraju/Möller
© Machiraju/Möller

Absorption

[P
ha

rr,
 H

um
ph

re
ys

, P
hy

si
ca

lly
 B

as
ed

 R
en

de
rin

g,
 2

00
4]

© Weiskopf/Machiraju/Möller

Emission
• Energy that is added to the environment

from luminous particles
• Lve: emitted light - not depending on

incoming light!

© Weiskopf/Machiraju/Möller
© Machiraju/Möller

Emission

[P
ha

rr,
 H

um
ph

re
ys

, P
hy

si
ca

lly
 B

as
ed

 R
en

de
rin

g,
 2

00
4]

© Weiskopf/Machiraju/Möller

Out-scattering + extinction
• Light heading in one direction is

scattered to other directions due to
collisions with particles

• σs: scattering coefficient - probability of
an out-scattering event to happen per
unit distance

© Weiskopf/Machiraju/Möller

Out-scattering + extinction
• Combining absorption and out-scattering:

• It’s solution:
– Tr - beam transmittance
– d - distance between p and p’
– ω - unit direction vector

p p’t

© Weiskopf/Machiraju/Möller

Out-scattering + extinction

• Properties of Tr:
– In vaccum
– Multiplicative
– Beer’s law (in homogeneous medium)

• Optical thickness between two points:

• Often used:
p p”p’

© Weiskopf/Machiraju/Möller

In-scattering
• Increased radiance due to scattering

from other directions
– Ignore inter-particle reactions
– S - source term: total added radiance per unit

distance

© Weiskopf/Machiraju/Möller

In-scattering

• S determined by
– Volume emission
– p - phase function: describes angular

distribution of scattered radiation (volume
analog of BSDF)

• p normalized to one:

© Weiskopf/Machiraju/Möller
© Machiraju/Möller

In-scattering

[P
ha

rr,
 H

um
ph

re
ys

, P
hy

si
ca

lly
 B

as
ed

 R
en

de
rin

g,
 2

00
4]

© Weiskopf/Machiraju/Möller 25

Overview

• Light: Volume rendering equation
• Discretized: Compositing schemes
• Ray casting

– Acceleration techniques for ray casting
• Texture-based volume rendering
• Shear-warp factorization
• Splatting
• Fourier Volume Rendering
• Cell projection (Shirley-Tuchman)

© Weiskopf/Machiraju/Möller 26

Compositing

• Compositing = iterative computation of
discretized volume integral

• Traversal strategies
– Front-to-back
– Back-to-front

• Directly derived from discretized integral
• Just different notation:
• Colors C and opacity α are assigned with

transfer function

© Weiskopf/Machiraju/Möller 27

• Over operator [Porter & Duff 1984]

• Used, e.g., in texture-based volume
rendering

• Compositing equation: 
	 Cout = (1 - α) Cin + C	 C(i)in = C(i-1)out

Back-to-front

Cin

Cout

C, α

C(N)out

Ci, αi

C(0)in

© Weiskopf/Machiraju/Möller 28

Front-to-back

• Needs to maintain αin
• Most often used in ray casting
• Compositing equation: 
 
	 Cout = Cin +(1 - αin) C  
	 αout = αin +(1 - αin) α

Cin, αin

Cout , αout

C, α

© Weiskopf/Machiraju/Möller 29

Compositing
• Associated colors

– Color contributions are already weighted by their corresponding
opacity

– Also called pre-multiplied colors

• Non-associated colors: C → Cα
– Just substitute in compositing equations

• Yields the same results as associated colors (on a cont.
level)
– Differences occur when combined with interpolation + post-

classification

• Ex.: back-to-front compositing with non-associated colors:  
	 Cout = (1 - α) Cin + Cα
– Standard OpenGL blending for semi-transparent surfaces

© Weiskopf/Machiraju/Möller 30

Compositing

• So far: accumulation scheme
• Variations of composition schemes

– First
– Average
– Maximum intensity projection

© Weiskopf/Machiraju/Möller 31

Compositing

Depth

Intensity
Max

Average

Accumulate

First

© Weiskopf/Machiraju/Möller 32

Compositing

• Compositing: First
• Extracts isosurfaces

Depth

Intensity

First

© Weiskopf/Machiraju/Möller 33

Compositing

• Compositing: Average
• Produces basically an X-ray picture

Depth

Intensity

Average

© Weiskopf/Machiraju/Möller 34

Compositing

• Maximum Intensity Projection (MIP)
• Often used for MR or CT angiograms
• Good to extract vessel structures

Intensity
Max

© Weiskopf/Machiraju/Möller 35

Compositing

• Compositing: Accumulate
• Emission-absorption model
• Make transparent layers visible (see classif.)

Depth

Intensity

Accumulate

© Weiskopf/Machiraju/Möller 36

Compositing

• Note: First and average are special cases
of accumulate

© Weiskopf/Machiraju/Möller 37

Overview

• Light: Volume rendering equation
• Discretized: Compositing schemes
• Ray casting

– Acceleration techniques for ray casting
• Texture-based volume rendering
• Shear-warp factorization
• Splatting
• Fourier Volume Rendering
• Cell projection (Shirley-Tuchman)

© Weiskopf/Machiraju/Möller 38

Ray Casting
• Similar to ray tracing in surface-based computer

graphics
• In volume rendering we only deal with primary rays;

hence: ray casting
• Natural image-order technique
• As opposed to surface graphics - how do we calculate

the ray/surface intersection?

© Weiskopf/Machiraju/Möller 39

Ray Casting
• Since we have no surfaces - carefully step through volume
• A ray is cast into the volume, sampling the volume at certain

intervals
• Sampling intervals are usually equidistant, but don’t have to be 

(e.g. importance sampling)
• At each sampling location, a sample is interpolated /

reconstructed from the voxel grid
• Popular filters are: nearest neighbor (box), trilinear, or more

sophisticated (Gaussian, cubic spline)
• First: Ray casting in uniform grids

– Implicit topology
– Simple interpolation schemes

© Weiskopf/Machiraju/Möller 40

Ray Casting

• Volumetric ray integration:
– Tracing of rays
– Accumulation of color and opacity along ray:

compositing
color

object (color, opacity)

1.0

© Weiskopf/Machiraju/Möller 41

Ray Casting

color

opacity

1.0

interpolation 
kernel

object (color, opacity)

volumetric compositing

© Weiskopf/Machiraju/Möller 42

Ray Casting

color c = αsc s (1 - α) + c

opacity α = α s (1 - α) + α

1.0

object (color, opacity)

volumetric compositinginterpolation 
kernel

© Weiskopf/Machiraju/Möller 43

Ray Casting

color

opacity

1.0

object (color, opacity)

volumetric compositing

© Weiskopf/Machiraju/Möller 44

Ray Casting

color

opacity

1.0

object (color, opacity)

volumetric compositing

© Weiskopf/Machiraju/Möller 45

Ray Casting

color

opacity

1.0

object (color, opacity)

volumetric compositing

© Weiskopf/Machiraju/Möller 46

Ray Casting

color

opacity

1.0

object (color, opacity)

volumetric compositing

© Weiskopf/Machiraju/Möller 47

Ray Casting

color

opacity

object (color, opacity)

volumetric compositing

© Weiskopf/Machiraju/Möller 48

Ray Casting
• How is color and opacity at each integration step

determined?
• Opacity and (emissive) color in each cell according

to classification
• Additional color due to external lighting:  

according to volumetric shading (e.g. Blinn-Phong)
• No shadowing, no secondary effects
• Implementations

– Traditional CPU implementation
– straightforward, very efficient GPU implemenations

• Fragment shader loops (Shader Model 3 GPUs)

© Weiskopf/Machiraju/Möller 49

Determining color at each step

• Pre-shading
– Assign color values to original function

values
– Interpolate between color values

• Post-shading
– Interpolate between scalar values
– Assign color values to interpolated scalar

values

© Weiskopf/Machiraju/Möller 50

Classification

voxels

post-
classification

interpolation

interpolation
pre-
classification

classification

transfer functions

classification

© Weiskopf/Machiraju/Möller 51

Pre-integrated Rendering
Slice-by-slice Slab-by-slab

sb

sfsf

sb

Volume integral in
dependent texture

sbsf

Pre-integration of all
combinations

sf sb

Front Back

Projection

Texturing

© Weiskopf/Machiraju/Möller 52

Pre-integrated Rendering
• Assumptions:

– Linear interp. of scalar values within a slab
– Constant length of a slab: L
– Only an approximation, but gives good results in most

cases
• Pre-computation of all potential contrib. from a slab

(linear interpolation within a slab)

⇒

⇒ RGB

pre-integrated
RGBA values

apply TF

© Weiskopf/Machiraju/Möller 53

128 Slabs284 Slices128 Slices

Pre-integrated Rendering

• Quality comparison

© Weiskopf/Machiraju/Möller 54

128 Slabs284 Slices128 Slices

Pre-integrated Rendering

• Quality comparison

© Weiskopf/Machiraju/Möller 55

Overview

• Light: Volume rendering equation
• Discretized: Compositing schemes
• Ray casting

– Acceleration techniques for ray casting
• Texture-based volume rendering
• Shear-warp factorization
• Splatting
• Fourier Volume Rendering
• Cell projection (Shirley-Tuchman)

© Weiskopf/Machiraju/Möller 56

Acceleration Techniques for
Ray Casting

• Problem: ray casting is time consuming
• Idea:

– Neglect “irrelevant” information to  
accelerate the rendering process

– Exploit coherence
• Early-ray termination

– Idea: colors from faraway regions do  
not contribute if accumulated opacity is to high

– Stop traversal if contribution of sample becomes
irrelevant

– User-set opacity level for termination
– Front-to-back compositing

© Weiskopf/Machiraju/Möller 57

Acceleration Techniques for
Ray Casting

• Space leaping
– Skip empty cells

• Homogeneity-acceleration
– Approximate homogeneous regions  

with fewer sample points

© Weiskopf/Machiraju/Möller 58

Acceleration Techniques for
Ray Casting

• Hierarchical spatial data structure
– Octree
– Mean value and variance stored in nodes of

octree

© Weiskopf/Machiraju/Möller 59

Acceleration Techniques for
Ray Casting

• Modern GPUs can be used for ray
casting

• Essential idea
– Fragment shader loop
– Implements ray marching

• Benefits from
– High processing speed of GPUs
– Built-in trilinear interpolation in 3D textures

• Requires Pixel Shader 3.0 compliant
GPUs

© Weiskopf/Machiraju/Möller 60

Overview

• Light: Volume rendering equation
• Discretized: Compositing schemes
• Ray casting

– Acceleration techniques for ray casting
• Texture-based volume rendering
• Shear-warp factorization
• Splatting
• Fourier Volume Rendering
• Cell projection (Shirley-Tuchman)

© Weiskopf/Machiraju/Möller 61

Texture-Based Volume
Rendering

• Object-space approach
• Based on graphics hardware:

– Rasterization
– Texturing
– Blending

• Proxy geometry because there are no
volumetric primitives in graphics hardware

• Slices through the volume
• Supported by older graphics hardware

– No need for (advanced) fragment shaders

© Weiskopf/Machiraju/Möller 62

Texture-Based Volume
Rendering

• Slice-based rendering

color

opacity

object (color, opacity) Similar to ray casting with
simultaneous rays

© Weiskopf/Machiraju/Möller 63

Texture-Based Volume
Rendering

pixelsvertices primitives fragments

scene
description

geometry
processing rasterization

fragment
operations

rendering pipeline

© Weiskopf/Machiraju/Möller 64

Texture-Based Volume
Rendering

• Proxy geometry
– Stack of texture-mapped slices
– Generate fragments
– Most often back-to-front traversal

© Weiskopf/Machiraju/Möller 65

Texture-Based Volume
Rendering

• 2D textured slices
– Object-aligned slices
– Three stacks of 2D textures
– Bilinear interpolation

© Weiskopf/Machiraju/Möller 66

Texture-Based Volume
Rendering

• Stack of 2D textures:
– Artifacts when stack is viewed close to 45

degrees
• Locations of sampling points may change

abruptly

© Weiskopf/Machiraju/Möller 67

Texture-Based Volume
Rendering

• 3D textured slices
– View-aligned slices
– Single 3D texture
– Trilinear interpolation

© Weiskopf/Machiraju/Möller 68

Texture-Based Volume
Rendering

• 3D texture:
– Needs support for 3D textures
– Data set stored only once (not 3 stacks!)
– Trilinear interpolation within volume

• Slower
• Good image quality

– Constant Euclidean distance  
between slices along a light ray

• Constant sampling distance 
(except for perspective projection)

© Weiskopf/Machiraju/Möller 69

Texture-Based Volume
Rendering

• 3D texture:
– No artifacts due to inappropriate viewing

angles
– Increase sampling rate à more slices

• Easy with 3D textures

© Weiskopf/Machiraju/Möller 70

Texture-Based Volume
Rendering

texturing
(trilinear 

interpolation)
compositing
(blending)

texturing
(bilinear 

interpolation)

compositing
(blending)

2D textures 
axis-aligned

3D texture 
view-aligned

© Weiskopf/Machiraju/Möller 71

Texture-Based Volume
Rendering

• Representation of volume data by textures
– Stack of 2D textures
– 3D texture

• Typical choices for texture format:
– Luminance and alpha

• Pre-classified (pre-shaded) gray-scale volume rendering
• Transfer function is already applied to scalar data
• Change of transfer func. requires complete redefinition of texture

data

– RGBA
• Pre-classified (pre-shaded) colored volume rendering
• Transfer function is already applied to scalar data

– Luminance
• Only the actual scalar data is stored
• Best solution!

© Weiskopf/Machiraju/Möller 72

Texture-Based Volume
Rendering

• Post-classification?
– Data set represented by luminance texture

(single channel)
– Dependent texture lookup in texture for color

table
– Fragment or pixel shader program

© Weiskopf/Machiraju/Möller 73

Texture-Based Volume
Rendering

• Compositing:
– Works on fragments
– Per-fragment operations
– After rasterization
– Blending of fragments via over operator
– OpenGL code for over operator  

glEnable (GL_BLEND);  
glBlendFunc (GL_ONE, GL_ONE_MINUS_SRC_ALPHA);

• Generate fragments:
– Render proxy geometry
– Slice
– Simple implementation: quadrilateral
– More sophisticated: triangulated intersection surface

between slice plane and boundary of the volume data
set

© Weiskopf/Machiraju/Möller 74

Texture-Based Volume
Rendering

• Advantages of texture-based rendering:
– Supported by consumer graphics hardware
– Fast for moderately sized data sets
– Interactive explorations
– Surface-based and volumetric representations can

easily be combined  
→ mixture with opaque geometries

• Disadvantages:
– Limited by texture memory  

 → Solution: bricking at the cost of additional texture
downloads to the graphics board

– Brute force: complete volume is represented by slices
– Rasterization speed + memory access can be

problematic

© Weiskopf/Machiraju/Möller 75

Overview

• Light: Volume rendering equation
• Discretized: Compositing schemes
• Ray casting

– Acceleration techniques for ray casting
• Texture-based volume rendering
• Shear-warp factorization
• Splatting
• Fourier Volume Rendering
• Cell projection (Shirley-Tuchman)

© Weiskopf/Machiraju/Möller 76

Shear-Warp Factorization

• Object-space method
• Slice-based technique
• Fast object-order rendering
• Accelerated volume visualization via  

shear-warp factorization [Lacroute & Levoy 1994]

• CPU-based implementation

© Weiskopf/Machiraju/Möller 77

Shear-Warp Factorization

• General goal: make viewing rays parallel to
each other and perpendicular to the image

• This is achieved by a simple shear

• Parallel projection (orthographic camera) is
assumed

shear

warp

© Weiskopf/Machiraju/Möller 78

Shear-Warp Factorization

• Algorithm:
– Shear along the volume slices
– Projection + comp. to get intermediate image
– Warping transformation of intermediate image

to get correct result
view rays

slices

view plane

shear

transformation: 
warp

projection

© Weiskopf/Machiraju/Möller 79

Shear-Warp Factorization

• For one scan line

© Weiskopf/Machiraju/Möller 80

Shear-Warp Factorization
• Mathematical description of the shear-warp

factorization
• Splitting the viewing transformation into separate

parts
• Mview	 = general viewing matrix
• P = permutation matrix: transposes coord. system

in order to make the z-axis the principal viewing axis
• S = transforms volume into sheared object space
• Mwarp	 = warps sheared object coordinates into image

coordinates
• Needs 3 stacks of the volume along 3 principal

axes

© Weiskopf/Machiraju/Möller 81

Shear-Warp Factorization

• Shear for parallel and perspective proj.

shear & 
scale

warp

shear perpendicular to z-axis shear and scale

perspective  
projection

© Weiskopf/Machiraju/Möller 82

Shear-Warp Factorization
• Algorithm (detailed):

– Transform volume to sheared object space by
translation and resampling

– Project volume into 2D intermediate image in
sheared object space

• Composite resampled slices front-to-back
– Transform intermediate image to image space using

2D warping
• In a nutshell:

– Shear (3D)
– Project (3D à 2D)
– Warp (2D)

© Weiskopf/Machiraju/Möller 83

Shear-Warp Factorization
• Three properties

– Scan lines of pixels in the intermediate image are
parallel to scan lines of voxels in the volume data

– All voxels in a given voxel slice are scaled by the
same factor

– Parallel projections only: 
Every voxel slice has the same scale factor

• Scale factor for parallel projections
– This factor can be chosen arbitrarily
– Choose a unity scale factor so that for a given

voxel scan line there is a one-to-one mapping
between voxels and intermediate image pixels

© Weiskopf/Machiraju/Möller 84

Shear-Warp Factorization
• Highly optimized algorithm for

– Parallel projection
– Fixed opacity transfer function

• Optimization of volume data (voxel scan lines)
– Run-length encoding of voxel scan lines
– Skip runs of transparent voxels
– Transparency and opaqueness determined by user-defined

opacity threshold
• Optimization in intermediate image:

– Skip opaque pixels in intermediate image (early-ray
termination)

– Store (in each pixel) offset to next non-opaque pixel

© Weiskopf/Machiraju/Möller 85

Shear-Warp Factorization
• Combining both ideas:

– First property (parallel scan lines for pixels and voxels): 
Voxel scan lines in sheared volume are aligned with
pixel scan lines in intermediate

– Both can be traversed in scan line order simultaneously

© Weiskopf/Machiraju/Möller 86

Shear-Warp Factorization
• Coherence in voxel space:

– Each slice of the volume is only translated
– Fixed weights for bilinear interpolation within

voxel slices
– Computation of weights only once per frame

• Final warping:
– Works on composited intermediate image
– Warp: affine image warper with bilinear filter
– Often done in hardware:  

render a quadrilateral with intermediate 2D
image being attached as 2D texture

© Weiskopf/Machiraju/Möller 87

Shear-Warp Factorization

• Parallel projection:
– Efficient reconstruction
– Lookup table for shading
– Lookup table for opacity correction

(thickness)
– Three RLE of the actual volume (in x, y, z)

• Perspective projection:
– Similar to parallel projection
– Difference: voxels need to be scaled
– Hence more then two voxel scan lines

needed for one image scan line

© Weiskopf/Machiraju/Möller 88

Overview

• Light: Volume rendering equation
• Discretized: Compositing schemes
• Ray casting

– Acceleration techniques for ray casting
• Texture-based volume rendering
• Shear-warp factorization
• Splatting
• Fourier Volume Rendering
• Cell projection (Shirley-Tuchman)

© Weiskopf/Machiraju/Möller 89

Splatting

• Splatting [Westover 1990]

• Object-order method
• Project each sample (voxel) from the

volume into the image plane

image

splat

© Weiskopf/Machiraju/Möller 90

Splatting

• Ideally we would reconstruct the continuous
volume (cloud) using the interpolation kernel
w (spherically symmetric):

• Analytic integral along a ray r for intensity
(emission):

• Rewrite:

splatting kernel (= “splat”)

© Weiskopf/Machiraju/Möller 91

• Discretization via 2D splats 
 
from the original 3D kernel

• The 3D rotationally symmetric filter kernel
is integrated to produce a 2D filter kernel

Splatting

3D filter kernel

Integrate along one dimension

2D filter kernel

© Weiskopf/Machiraju/Möller 92

Splatting

• Draw each voxel as a cloud of points
(footprint) that spreads the voxel
contribution across multiple pixels

• Footprint: splatted (integrated) kernel
• Approximate the 3D kernel  

h(x,y,z) extent by a sphere

© Weiskopf/Machiraju/Möller 93

Splatting

• Larger footprint increases blurring  
and used for high pixel-to-voxel ratio

• Footprint geometry
– Orthographic projection: footprint is

independent of the view point
– Perspective projection: footprint is  

elliptical
• Pre-integration of footprint
• For perspective projection: additional

computation of the orientation of the ellipse

© Weiskopf/Machiraju/Möller 94

Splatting

• Volume = field of 3D interpolation kernels
– One kernel at each grid voxel

• Each kernel leaves a 2D footprint on
screen

• Weighted footprints accumulate into
image

voxel kernels screen footprints = splats

screen

© Weiskopf/Machiraju/Möller 95

Splatting

• Volume = field of 3D interpolation kernels
– One kernel at each grid voxel

• Each kernel leaves a 2D footprint on
screen

• Weighted footprints accumulate into
image

voxel kernels screen footprints = splats

screen

© Weiskopf/Machiraju/Möller 96

Splatting

• Volume = field of 3D interpolation kernels
– One kernel at each grid voxel

• Each kernel leaves a 2D footprint on
screen

• Weighted footprints accumulate into
image

voxel kernels screen footprints = splats

screen

© Weiskopf/Machiraju/Möller 97

Splatting

• Voxel kernels are added within sheets
• Sheets are composited front-to-back
• Sheets = volume slices most

perpendicular to the image plane 
(analogously to stack of slices)

image plane at 70° image plane at 30°

volume slices

x

y
z

volume slices

© Weiskopf/Machiraju/Möller 98

Splatting

• Core algorithm for splatting
• Volume

– Represented by voxels
– Slicing

• Image plane:
– Sheet buffer
– Compositing buffer

sheet buffer

compositing buffer

volume slices

image plane

© Weiskopf/Machiraju/Möller 99

Splatting

• Add voxel kernels within first sheet

sheet buffer

compositing buffer

image plane

volume slices

© Weiskopf/Machiraju/Möller 100

Splatting

• Transfer to compositing buffer

sheet buffer

compositing buffer

image plane

volume slices

© Weiskopf/Machiraju/Möller 101

Splatting

• Add voxel kernels within second sheet

sheet buffer

compositing buffer

image plane

volume slices

© Weiskopf/Machiraju/Möller 102

Splatting

• Composite sheet with compositing buffer

sheet buffer

compositing buffer

image plane

volume slices

© Weiskopf/Machiraju/Möller 103

Splatting

• Add voxel kernels within third sheet
volume slices

sheet buffer

compositing buffer

image plane

© Weiskopf/Machiraju/Möller 104

Splatting

• Composite sheet with compositing buffer

sheet buffer

compositing buffer

image plane

volume slices

© Weiskopf/Machiraju/Möller 105

Splatting

• Inaccurate compositing
• Problems when splats overlap
• Incorrect mixture of

– Integration (3D kernel to 2D splat)  
and

– Compositing

problematic

© Weiskopf/Machiraju/Möller 106

Splatting
• Simple extension to

volume data without grids
– Scattered data with kernels
– Example: SPH (smooth

particle hydrodynamics)
– Needs sorting of sample

points

© Weiskopf/Machiraju/Möller 107

Overview

• Light: Volume rendering equation
• Discretized: Compositing schemes
• Ray casting

– Acceleration techniques for ray casting
• Texture-based volume rendering
• Shear-warp factorization
• Splatting
• Fourier Volume Rendering
• Cell projection (Shirley-Tuchman)

© Weiskopf/Machiraju/Möller 108

Fourier Volume Rendering

• Tom Malzbender 1993
• Totsuka, Levoy 1993
• non-”traditional” method
• rendering in the Fourier domain
• based on Fourier Projection Slice

Theorem
• very efficient
• lots of accuracy problems

© Weiskopf/Machiraju/Möller 109

Projection Slice Theorem

• Relates a slice of the Fourier transform to
an integral in one direction in spatial
domain

© Weiskopf/Machiraju/Möller 110

FVR - Basic Algorithm

• Preprocessing:
– pre-multiply spatial domain
– zero-pad the volume
– compute Fourier transform

• Actual Algorithm
– compute viewing angle
– extract 2D slice
– inverse 2D Fourier transform of slice

© Weiskopf/Machiraju/Möller 111

FVR - Resampling revisited

Acquisition

Reconstru
ction

Resampling

Original function Sampled function

Reconstructed  
Function Re-sampled function

© Weiskopf/Machiraju/Möller 112

FVR - Pre-multiplication

• Extracting slice requires a resampling
step

• what impact has sampling in Frequency
domain to the spatial domain??

© Weiskopf/Machiraju/Möller 113

FVR - Pre-multiplication (2)

• Or mathematically:
• Reconstruction = convolution with an

interpolation filter H:
• Fh(w) = F(k)*H(s)
• and in spatial domain:
• fh(x) = f(x).h(x)

© Weiskopf/Machiraju/Möller 114

FVR - Pre-multiplication (3)

© Weiskopf/Machiraju/Möller 115

FVR - zero-padding

• Separates the spatial replicas further
• Decreases artifacts in spatial domain
• zero-padded function:

Original function

Resampling

Resampled function

© Weiskopf/Machiraju/Möller 116

FVR - Efficiency

• Typical Fourier Transform = O(N3*N3)
• Fast Fourier Tranform = O(N3*logN)
• Hence:

– pre-processing = O(N3*logN)
– slicing = O(N2)
– inverse Fourier Transform (slice) =

O(N2*logN)
• other rendering algorithm O(N3)

© Weiskopf/Machiraju/Möller 117

FVR - Efficiency (2)

© Weiskopf/Machiraju/Möller 118

FVR - Depth-Shading

• Basic algorithm produces x-ray type
images

• no depth information is conveyed
• depth incoding: f(x).d(x)
• Fourier Transform (with interpolation):
• F(w)*D(w)*H(w)
• Hence pre-multiply H with D!

© Weiskopf/Machiraju/Möller 119

FVR - Depth-Shading (2)

• Linear depth cueing:

• Fourier Transform

• Combined filter:

© Weiskopf/Machiraju/Möller 120

FVR - Ambient-Shading

• Typical ambient component:
– C - color
– L - constant
– O - object color

• approximation:
• Fourier transform:

© Weiskopf/Machiraju/Möller 121

FVR - Diffuse-Shading

• Typical diffuse component:

– N - normal vector
– L - light vector

• doesn’t have a simple Fourier transform
• approximation - illumination by

hemisphere:

© Weiskopf/Machiraju/Möller 122

FVR - Diffuse-Shading (2)

• approximation:

• Fourier transform:

© Weiskopf/Machiraju/Möller 123

FVR - Diffuse-Shading (3)

© Weiskopf/Machiraju/Möller 124

Overview

• Light: Volume rendering equation
• Discretized: Compositing schemes
• Ray casting

– Acceleration techniques for ray casting
• Texture-based volume rendering
• Shear-warp factorization
• Splatting
• Fourier Volume Rendering
• Cell projection (Shirley-Tuchman)

© Weiskopf/Machiraju/Möller 125

Cell Projection

• For unstructured grids
• Alternative to ray casting (Garrity’s alg.)
• Projected Tetrahedra (PT) algorithm 

[P. Shirley, A. Tuchman: A polygonal  
approximation to direct scalar volume  
rendering, Volvis 1990, p. 63-70]

© Weiskopf/Machiraju/Möller 126

Cell Projection

• Basic idea

Blending

Final Image

© Weiskopf/Machiraju/Möller 127

Cell Projection

• Spatial sorting for all tetrahedra in a grid
– Back-to-front or front-to-back strategies possible
– Compositing is not commutative

• MPVO algorithm: Meshed Polyhedra Visibility
Ordering [P. Williams: Visibility Ordering Meshed Polyhedra, ACM Transactions on
Graphics, 11(2), 1992, p. 103-126]

– Only for acyclic, convex grids

cyclicconvex non-convex

© Weiskopf/Machiraju/Möller 128

Cell Projection

• Decomposition of non-tetrahedral
unstructured grids into tetrahedra
– PT can be applied for all types of

unstructured grids

© Weiskopf/Machiraju/Möller 129

Cell Projection

• Alternative to working directly on
unstructured grids
– Resampling approaches, adaptive mesh

refinement (AMR)

