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Overview

* 2D visualization
slice images
(or multi-planar
reformating MPR)

* Indirect
3D visualization
ISosurfaces
(or surface-shaded
ISRl ST

3D visualization
(direct volume
rendering DVR)
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e [he datais co
represent a se

Model »

nsidered 1o
Mi-transparent light-

emitting medic
— Also gaseous

m
phenomena can be simulated

e Approaches are based on the laws of
physics (emission, absorption, scattering)

e The volume data is used as a whole
(look inside, see all interior structures)
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Key-ideas

o | ight!
¢ [ransfer functions

e discrete data vs. continuous phenomena
(.e. interpolation)

e Projection: 3D — 2D
e |[lusion of interaction (speed!)
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Overview

_ight: Volume rendering equation
Discretized: Compositing schemes

Ray casting
— Acceleration technigues for ray casting

Fourier Volume Rendering
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Readings

Visualization Handbook:

hapter 7 (Overview of Volume Rendering)
napter 8 (Volume Rendering Using Splatting)
napter 10 (Pre-Integrated Volume Rendering)

hapter 11 (Hardware-Accelerated Volume Rendering)

e Engel et al: Real-time Volume Graphics

— Chapter 1 (Theoretical Background and Basic
Approaches)

-G
- C
-G

hapter 3 (Basic GPU-Based Volume Rendering)
napter 7 (GPU-Based Ray Casting)

hapter 9 (Improving Image Quality)



Readings cont.

e Malzbender: “Fourier volume rendering”,
ACM Transactions on Graphics (10G),
vol. 12(3), July 1993, Pages 233-250

e [otsuka, Levoy, “Frequency domain
volume rendering”, SIGGRAPH '93,
Pages 2/1-278
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Volume Rendering Equation

e (Goal: physical model for volume rendering
— Emission-absorption model
— Density-emitter model saseie 1ess
— Leads to volume rendering equation

e More general approach:
— Linear transport theory
— Equation of transfer for radiation
— Basis for all rendering methods

¢ |mportant aspects:
— Absorption
— Emission
— Scattering
— Participating medium
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Volume Rendering Equation

e Contributions to radiation at a single
position:
— Absorption

Absorption outscattering emission inscattering

© Weiskopf/Machiraju/Moller
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Volume Rendering Equation

Assumptions:

— Based on a physical model for radiation
— Geometrical optics

Neglect:

— Diffraction

— Interference

— Wave-character
— Polarization

Interaction of light with matter at the macroscopic

scale
— Describes the changes of specific intensity due to
absorption, emission, and scattering

Based on energy conservation
Expressed by equation of transfer
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Steady State

 Accumulation =
flow through boundaries
- flow out of boundaries
+ generation within system
- absorption within system

Sreaming + Absorbance + QOutscattering = Emission + Inscattering

& VYYCISKOPL/IviaCiiuraju/ivioler



Absorption

* [he reduction of radiance due to
conversion of light to another form of
energy (e.g. heat)

e O, absorption cross section - probability

density that light is absorlbed per unit
distance traveled

L(pw)-L(p-w)=dL,(pw)=-0,L(p-o)dt

Li(l;a_w) Oz 0 o OOOQ ) L(po)
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Absorption
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Emission

* Energy that is added to the environment
from luminous particles

o L : emitted light - not depending on
incoming light!

dL,(pw)=L,(p-w)dt

Lve(pb_m) Oa " {‘ # a& i @ Lo(p,(l))
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Qut-scattering + extinction

* Light heading in one direction is
scattered to other directions due to
collisions with particles

o O scattering coefficient - probability of

an out-scattering event to happen per

unit distance
dL,(pw)=-0, p,u))L(p,—u))dt

L(p-o) O Sl (o)

kopf/M achiraju/Moller




Qut-scattering + extinction

* Combining absorption and out-scattering:

o,(pw)=0(pw)+o,(pw)
dL,(p.)

dt
* It's solution:  T,(p—p')=
— T, - beam transmittance

=-0,(p.0)L{(p-)

— d - distance between p and p’

- - unit direction vector

d
_fo o,(p+tw.w)dt
e

L(pw)

© Weiskopf/Machiraju/Moller
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Qut-scattering + extinction

o Properties of T

— In vaccum T(p—p)=1
— Multiplicative  T.(p—=p")=T.(p—=p')- T.(p' = p")
— Beer’s law (in homogeneous medium)

T(p—>p)=e
e Optical thickness between two poi

t(p—=p)=J;0,(p+tww)d

-0.,d

o

Nnts:

e Often used: L(po)

T(p—=p)=1-1(p—p)

© Weiskopf/Machiraju/Moller
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In-scattering

* |[ncreased radiance due to scattering
from other directions

— Ignore inter-particle reactions

— S - source term: total added radiance per unit
distance

aL (p,oo)= S pw)adt

OL
L(p-0) .

° Ly(po)

© Welskopf/Machiraju/Mt')ller
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In-scattering
S(p.w)=L,,(p,w)+ Gs(p,oz))fs2 p(p,~w' — o)L (p,w')dw’
e S determined by

— Volume emission

— P - phase function: describes angular
distribution of scattered radiation (volume

analog of BSDF) f Pl — w')do’ =1
* p normalized tcione' S

L(p-0) \Jo °

© Wi skopf/MaChlraJu/Moller




In-scattering
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Overview

_ight: Volume rendering equation
Discretized: Compositing schemes

Ray casting
— Acceleration technigues for ray casting

Fourier Volume Rendering
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Compositing

e Compositing = iterative computation of
discretized volume integral

¢ [raversal strategies
— Front-to-back

— Bac
e Direct
e JustC

K-to-front CM=C"x{1-a)+C
y derived from discretized integral
ifferent notation:

e Colors C and opacity a are assigned with

transfer function
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Back-to-front

e Qver operator [Porter & Duff 1984]

e Used, e.qg., In texture-based volume
rendering
e Compositing equation:

CUM=(1-a)Cn+C  Clijn = Cli-1)ou
Cin

© Weiskopf/Machiraju/Moller C( N)out



Front-to-back

e Needs to maintain a”

e Most often used in ray casting
e Compositing equation:

COUJ[ Clﬂ +(1 _ am) C Acout,aout
a’ = oM +(1 - o) a I co

© Weiskopf/Machiraju/Moller
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Compositing

Associated colors

— Color contributions are already weighted by their corresponding
opacity

— Also called pre-multiplied colors
Non-associated colors: C = Ca

— Just substitute in compositing equations

Yields the same results as associated colors (on a cont.
level)

— Differences occur when combined with interpolation + post-
classification

EX.: back-to-front compositing with non-associated colors:
CUt=(1-0a)C"+ Ca

— Standard OpenGL blending for semi-transparent surfaces
© Weiskopf/Machiraju/Moller
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Compositing

e S0 far: accumulation scheme

e \/ariations of composition schemes
— First
— Average
— Maximum intensity projection

© Weiskopf/Machiraju/Moller
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Compositing

Intensity
Max

Accumulate /\

Average / \ (

First

Depth

© Weiskopf/Machiraju/Moller 31



Compositing

e Compositing: First
e Extracts iIsosurfaces

Intensity

A

First

Depth

© Weiskopf/Machiraju/Moller
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Compositing

e Compositing: Average
e Produces basically an X-ray picture

Intensity

Average/\ [\ -~ A ‘
A

>

Depth

© Weiskopf/Machiraju/Moller

33



Compositing

e Maximum Intensity Projection (MIP)
e Often used for MR or CT angiograms
e G00d to extract vessel structures

Intensity
+ Max

© Weiskopf/Machiraju/Moller



Compositing

e Compositing: Accumulate
e Emission-absorption model
e Make transparent layers visible (see classif.)

Intensity

A

Accumul%te ‘

N

>

© Weiskopf/Machiraju@/@mh
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Compositing

e Note: First and average are special cases
of accumulate

© Weiskopf/Machiraju/Moller

36



Overview

_ight: Volume rendering equation
Discretized: Compositing schemes

Ray casting
— Acceleration technigues for ray casting

Fourier Volume Rendering
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Ray Casting

e Similar to ray tracing in surface-based computer
graphics

* |n volume rendering we only deal with primary rays;

nence: ray casting

e Natural image-order technique

e As opposed to surface graphics - how do we calculate
the ray/surface intersection”

””””“ r

© Weiskopf/Machiraju/Moller 38



Ray Casting

Since we have no surfaces - carefully step through volume

A ray is cast into the volume, sampling the volume at certain
Intervals

Sampling intervals are usually equidistant, but don’t have to be
(e.g. importance sampling)

At each sampling location, a sample is interpolated /
reconstructed from the voxel grid

Popular filters are: nearest neighbor (box), trilinear, or more
sophisticated (Gaussian, cubic spline)

First: Ray casting in uniform grids
— Implicit topology
— Simple interpolation schemes

© Weiskopf/Machiraju/Moller



Ray Casting

¢ \/olumetric ray integration:
— Tracing of rays

— Accumulation of color and opacity along ray:
compositing

"~y

© Weiskopf/MachirajwMaller  OPJECT ( , opacity) 4



Ray Casting

interpolation

volumetric compositin
kernel P J

opacity

object ( , opacity)

© Weiskopf/Machiraju/Moller
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Ray Casting

interpolation

volumetric compositin
kernel P J

colorc=ac(1-a)+cC

opacity a=a (1 -a) +a

object (color, opacity)

© Weiskopf/Machiraju/Moller
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Ray Casting

volumetric compositing

opacity

object (color, opacity)

© Weiskopf/Machiraju/Moller
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Ray Casting

volumetric compositing
opacity

1.0

~

object (color, opacity)

© Weiskopf/Machiraju/Moller
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Ray Casting

volumetric compositing
opacity

1.0

~

object (color, opacity)

© Weiskopf/Machiraju/Moller
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Ray Casting

volumetric compositing

color

opacity

1.0

~

object (color, opacity)

© Weiskopf/Machiraju/Moller
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Ray Casting

volumetric compositing

opacity

~

object (color, opacity)

© Weiskopf/Machiraju/Moller
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Ray Casting

How Is color and opacity at each integration step
determined”?

Opacity and (emissive) color in each cell according
to classification

Additional color due to external lighting:
according to volumetric shading (e.g. Blinn-Phong)

No shadowing, no secondary effects

Implementations
— Traditional CPU implementation

— straightforward, very efficient GPU implemenations

e Fragment shader loops (Shader Model 3 GPUs)
© Weiskopf/Machiraju/Moller 48



Determining color at each step

® Pre-shading
— Assign color values to original function

values
— Interpolas

e Post-shao

e between color values

Igle

— Interpola

‘e between scalar values

— Assign color values to interpolated scalar

values

© Weiskopf/Machiraju/Moller
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N

transfer functions pre-

olation classification

{ classifi

voxels

Interpol sification

pOSt-
classification
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Pre-integrated Rendermg

Slice-by-slice  Slab-by-slab Projection

—hm /
n
o

3

£
¢
£ 1
/ 1
£ -
7 1

Front Back

Pre-integration of all
combinations

.

t 1 ' G
S; S f
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Pre-integrated Rendering

e Assumptions:
— Linear interp. of scalar values within a slab
— Constant length of a slab: L
— Only an approximation, but gives good results in most
cases

e Pre-computation of all potential contrib. from a slab

S (t)=s, + L(Sf -S,) (linear interpolation within a slab)

N

= a=1-0 ,
pre-integrated

g RGBA values

= RGB

—
© Weiskopf/Machiraju/Moller 52




Pre-integrated Rendering

e Quality comparison

128 Slices 284 Slices 128 Slabs

© Weiskopf/Machiraju/Moller 53



Pre-integrated Rendering

e Quality comparison

128 Slices 284 Slices 128 Slabs

© Weiskopf/Machiraju/Moller 54



Overview

_ight: Volume rendering equation
Discretized: Compositing schemes

Ray casting
— Acceleration technigues for ray casting

Fourier Volume Rendering
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Acceleration Technigues for
Ray Casting

e Problem: ray casting Is time consuming

° |dea: S G @
— Neglect “irrelevant” information to T @&\
accelerate the rendering process

~ Exploit coherence SOAV.

o Early-ray termination
— |dea: colors from faraway regions do
not contribute If accumulated opacity is to high
— Stop traversal if contribution of sample becomes
Irrelevant
— User-set opacity level for termination
— Front-to-back compositing

© Weiskopf/Machiraju/Moller 56




Acceleration Technigues for
Ray Casting

e Space leaping
— Skip empty cells
® Homogeneity-acceleration

— Approximate homogeneous regions -
with fewer sample points

~
~

© Weiskopf/Machiraju/Moller 57



Acceleration Technigues for
Ray Casting

e Hierarchical spatial data structure

— QOctree
— Mean value and variance stored in nhodes of

oclree
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Acceleration Technigues for
Ray Casting

e Modern GPUs can be used for ray
casting

e Essential idea
— Fragment shader loop
— Implements ray marching

¢ Benefits from
— High processing speed of GPUs
— Built-in trilinear interpolation in 3D textures

e Requires Pixel Shader 3.0 compliant
GPUs

© Weiskopf/Machiraju/Moller
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Overview

_ight: Volume rendering equation
Discretized: Compositing schemes

Ray casting
— Acceleration technigues for ray casting

Fourier Volume Rendering
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Texture-Based Volume
Rendering

e Object-space approach

e Based on graphics hardware:
— Rasterization
— Texturing
— Blending

® Proxy geometry because there are no
volumetric primitives in graphics hardware

e Slices through the volume

e Supported by older graphics hardware
— No need for (advanced) fragment shaders o



Texture-Based Volume
Rendering

e Slice-based rendering

color

opacity

object (color, opacity) // imilar to ray casting with

simultaneous rays

© Weiskopf/Machiraju/Moller
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Texture-Based Volume

Rendering

rasterization

-

scene geometry
description processing
O
O
o
O
vertices primitives

fragment
operations

fragments

rendering pipeline

© Weiskopf/Machiraju/Moller
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Texture-Based Volume
Rendering

* Proxy geometry
— Stack of texture-mapped slices
— Generate fragments
— Most often back-to-front traversal

64



Texture-Based Volume
Rendering

o 2D textured slices
— Object-aligned slices
— Three stacks of 2D textures
— Bilinear interpolation




Texture-Based Volume

Rendering

e Stack of 2D textures:

— Artifacts when stack is viewed close to 45
degrees

¢ | ocations of sampling points may change
abruptly
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Texture-Based Volume
Rendering

e 3D textured slices
— View-aligned slices
— Single 3D texture
— Trilinear interpolation




Texture-Based Volume
Rendering

e 3D texture: |
— Needs support for 3D textures
— Data set stored only once (not 3 stackg!

— Trilinear interpolation within volume  —
e Slower
e (Good image quality
— Constant Euclidean distance
between slices along a light ray

e Constant sampling distance
(except for perspective projection)

© Weiskopf/Machiraju/Moller



Texture-Based Volume
Rendering

o 3D texture:
— No artifacts due to inappropriate viewing
angles
— Increase sampling rate = more slices
e Fasy with 3D textures

69



Texture-Based Volume
Rendering

M=
AT
AT W
\ \\
WY
LA
WL
TR
\

\
WL TS
AR
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IRV RRRRAN L
IR
WAL T
\ ‘\“\“l‘\‘l\llul\ |
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2D textures

axis-aligned
texturing [ compositing
(bilinear (blending)
interpolation
3D texture
view-aligned

texturing
~ (trilinear .
interpolation) © Weiskop

compositing
(blending)

70



Texture-Based Volume
Rendering

¢ Representation of volume data by textures
— Stack of 2D textures
— 3D texture

e [ypical choices for texture format:

— Luminance and alpha
e Pre-classified (pre-shaded) gray-scale volume rendering
¢ [ransfer function is already applied to scalar data
e Change of transfer func. requires complete redefinition of texture
data

- RGBA

e Pre-classified (pre-shaded) colored volume rendering
e [ransfer function is already applied to scalar data

— Luminance
e Only the actual scalar data is stored

e Bestsolution! o weiskopf/Machiraju/Msller
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Texture-Based Volume
Rendering

e Post-classification?

— Data set represented by luminance texture
(single channel)

— Dependent texture lookup in texture for color
table
— Fragment or pixel shader program

© Weiskopf/Machiraju/Moller
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Texture-Based Volume
Rendering

e Compositing:
— Works on fragments
— Per-fragment operations
— After rasterization
— Blending of fragments via over operator

— OpenGL code for over operator
glEnable (GL_BLEND) ;
glBlendFunc (GL ONE, GL ONE MINUS SRC ALPHA) ;

e (Generate fragments:
— Render proxy geometry
— Slice
— Simple implementation: quadrilateral
— More sophisticated: triangulated intersection surface
between slice plane and boundary of the volume data
set © Weiskopf/Machiraju/Moller
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Texture-Based Volume
Rendering

e Advantages of texture-based rendering:
— Supported by consumer graphics hardware
— Fast for moderately sized data sets
— Interactive explorations
— Surface-based and volumetric representations can
easily be combined
— mixture with opaque geometries

e Disadvantages:
— Limited by texture memory
— Solution: bricking at the cost of additional texture
downloads to the graphics board
— Brute force: complete volume is represented by slices

— Rasterization speed + memory access can be
problematic © Weiskopf/Machiraju/Moller
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Overview

_ight: Volume rendering equation
Discretized: Compositing schemes

Ray casting
— Acceleration technigues for ray casting

Fourier Volume Rendering
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Shear-Warp Factorization

e Object-space met

e Slice-based techn

Nod

que

e Fast object-order rendering

e Accelerated volume visualization via
Shear—Warp faCtOrizatiOﬂ [Lacroute & Levoy 1994]

e CPU-based implementation

© Weiskopf/Machiraju/Moller
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Shear-Warp Factorization

e General goal: make viewing rays parallel to
each other and perpendicular to the image

e [his is achieved by a simple shear

L3
NN shear

> T

e Parallel projection (orthographic camera) is
assumead

© Weiskopf/Machiraju/Moller 77



Shear-Warp Factorization

e Algorithm:
— Shear along the volume slices
— Projection + comp. to get intermediate image

— Warping transformation of intermediate image
to get correct result shear

view r f\ " projection
\ NNERN slices
AN |
AN

N

\ transforn%%
view plane warp

© Weiskopf/Machiraju/Moller 78




Shear-Warp Factorization

e For one scan line:. shears

resample

voxel
scanline —

voxel slice intermediate image

© Weiskopf/Machiraju/Moller

intermediate
image scanline

/ 3. warp &

resample

2. project — %

AN

final image
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Shear-Warp Factorization

¢ Mathematical description of the shear-warp
factorization

e Splitting the viewing transformation into separate

parts M., =P>xS ><IV|Walrlo
- M,., = general viewing matrix
- P = permutation matrix: transposes coord. system
In order to make the z-axis the principal viewing axis
- S = transforms volume into sheared object space
- M,., = warps sheared object coordinates into image

coordinates
¢ Needs 3 stacks of the volume along 3 principal

aAXES © Weiskopf/Machiraju/Mbller



Shear-Warp Factorization

e Shear for parallel and perspective proj.

(1
0
S

X

0

par

shear perpendicular to z-axis

O\
N\ \
\ \

perspective
projection

N\

0 0 0)
1 0 0.
sy10j

0 0 17

persp

© Weiskopf/Machiraju/Moller
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0 0 0 17

shear and scale

AN
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Shear-Warp Factorization

e Algorithm (detailed):
— Transform volume to sheared object space by
translation and resampling

— Project volume into 2D intermediate image Iin
sheared object space

e Composite resampled slices front-to-back
— Transform intermediate image to image space using
2D warping
* |n a nutshell:
— Shear (3D)
— Project (3D - 2D)
— Warp (2D) © Weiskopf/Machiraju/Mbller
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Shear-Warp Factorization

® [hree properties

— Scan lines of pixels in the intermediate image are
parallel to scan lines of voxels in the volume data

— All voxels in a given voxel slice are scaled by the
same factor

— Parallel projections only:
Every voxel slice has the same scale factor

e Scale factor for parallel projections
— This factor can lbe chosen arbitrarily

— Choose a unity scale factor so that for a given
voxel scan line there is a one-to-one mapping
between voxels and intermediate image pixels

83



Shear-Warp Factorization

e Highly optimized algorithm for
— Parallel projection
— Fixed opacity transfer function

e Optimization of volume data (voxel scan lines)
— Run-length encoding of voxel scan lines

— Skip runs of transparent voxels
— Transparency and opaqueness determined by user-defined

opacity threshold

e (Optimization in intermediate image:
— Skip opaque pixels in intermediate image (early-ray
termination)
— Store (in each pixel) offset to next non-opaque pixel

opaque
pixel

non-opaque
© Weiskopt pixel




Shear-Warp Factorization

e Combining both ideas:

— First property (parallel scan lines for pixels and voxels):
Voxel scan lines in sheared volume are aligned with
pixel scan lines in intermediate

— Both can be traversed in scan line order simultaneously

voxel scanline:

v

resample and
composite

intermediate |
image
scanline: - | - -

L L
skip work ‘ skip ‘ work

transparent voxel run

non-transparent voxel run

skip

B opaque image pixel run

B non-opaque image pixel run

5



Shear-Warp Factorization

e Coherence in voxel space:
— Each slice of the volume is only translated

— Fixed weights for bilinear interpolation within
voxel slices

— Computation of weights only once per frame
e Fnal warping:

— Works on composited intermediate image

— Warp: affine image warper with bilinear filter

— Often done in hardware:
render a quadrilateral with intermediate 2D
Image being attached as 2D texture

86



Shear-Warp Factorization

e Parallel projection:
— Efficient reconstruction
— Lookup table for shading
— Lookup table for opacity correction
(thickness)

— Three RLE of the actual volume (in X, v, 2)

e Perspective projection:
— Similar to parallel projection
— Difference: voxels need to be scaled
— Hence more then two voxel scan lines
needed for one image scan line

© Weiskopf/Machiraju/Moller
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Overview

_ight: Volume rendering equation
Discretized: Compositing schemes

Ray casting
— Acceleration technigues for ray casting

Fourier Volume Rendering
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Splatting

® Splatti NJ (Westover 1990]
e Object-order method
e Project each sample (voxel) from the

volume into the image plane
splat

image |

89
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Splatting

¢ |deally we would reconstruct the continuous
volume (cloud) using the interpolation kernel
w (spherically symmetric):

(V)= ZW(V =V )f (V)

e Analytic integral along a ray r for intensity

(emission):
()= [fi(p+r)dr = [ wlp+r-v, ), )dr
e Rewrite:

I(p) = Zf(vk)xfw(p +r-v,)dr

Tsplatting kernel (= "splgt”)

© Weiskopf/Machiraju/Moller



Splatting

e Discretization via 2D splats
Splat(x, y) =fw(x,y,z)dz
from the original 3D kernel

e [he 3D rotationally symmetric filter kernel
S integrated to produce a 2D filter kernel

y
\

N~

N
%

3D filter kernel

Integrate along one dimension

| 2D filter kernel

© Welskopt/MachlraJu/l\; oller 91



Splatting

e Draw each voxel as a cloud of points
(footprint) that spreads the voxel
contribution across multiple pixels

e Footprint: splatted (integrated) kernel

o Approximate the 3D kernel
h(x,y,z) extent by a sphere

V.

4 e ' \ R
'EU”n;}A:A\,,‘!l \
AR IO
's'/A\'.O:‘;\,vév./A\YO.'/A\'a'.'
N ‘p Y YA y ' 4'

"
" “‘* ql
’sc" ‘4. y
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Splatting

e Larger footprint increases blurring  ~ -4
and used for high pixel-to-voxel ratic( """
* Footprint geometry

— Orthographic projection: footprint is Q

iIndependent of the view point =

— Perspective projection: footprint is
elliptical -~
* Pre-integration of footprint TH A |
e [or perspective projection: additional 1
computation of the orientation of the ellipse
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Splatting

e \/olume = field of 3D interpolation kernels

— One kerne

e Fach kerne
screen

at each grio

voxel

leaves a 2

D footprint on

¢ \\Neighted footprints accumulate into

image

voxel kernels

>screen footprints = splats

screen
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Splatting

e \/olume = field of 3D interpolation kernels

— One kerne

e Fach kerne
screen

at each grid voxel
leaves a 2D footprint on

¢ \\Neighted footprints accumulate into

image

voxel kernels

>\‘/)screen footprints = splats

)

screen
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Splatting

e \/olume = field of 3D interpolation kernels

— One kerne

e Fach kerne
screen

at each grio

voxel

leaves a 2

D footprint on

¢ \\Neighted footprints accumulate into

image

voxel kernels

>screen footprints = splats

screen
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Splatting

¢ \/oxel kernels are added within sheets
neets are composited front-to-back

S
¢S

neets = volume slices most

perpendicular to the image plane
(analogously to stack of slices)

volume slices

Z A
/y
1T
m y /
i/
image plane at 70°

-

image plane at 30°
© Weiskopf/Machiraju/Moller
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Splatting

e Core algorithm for splatting

e \/olume
— Represented by voxels
— Slicing

* |mage plane:

— Sheet buffer
— Compositing buffer

sheet buffer
image plane /

compositing buffer

© Weiskopf/Machiraju/Moller
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Splatting

e Add voxel kernels within first sheet

volume slices

sheet buffer
image plane

compositing buffer

© Weiskopf/Machiraju/Moller
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Splatting

® [ransfer to compositing buffer

volume slices

sheet buffer
image plane /

compositing buffer
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Splatting

e Add voxel kernels within second sheet

volume slices

mmf\

sheet buffer
image plane

compositing buffer
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Splatting

e Composite sheet with compositing buffer

volume slices

sheet buffer
image plane

compositing buffer
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Splatting

e Add voxel kernels within third sheet

volume slices

sheet buffer
image plane /

compositing buffer
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Splatting

e Composite sheet with compositing buffer

volume slices

sheet buffer
image plane /
\

compositing buffer

© Weiskopf/Machiraju/Moller 104



Splatting

naccurate compositing
Problems when splats overlap
ncorrect mixture of

problematic

— Integration (3D kernel to 2D spl
and

— Compositing

© Weiskopf/Machiraju/Moller 105



Splatting

e Simple extension to
volume data without grids
— Scattered data with kernels

— Example: SPH (smooth
particle hydrodynamics)

— Needs sorting of sample
noINts
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Overview

_ight: Volume rendering equation
Discretized: Compositing schemes

Ray casting
— Acceleration technigues for ray casting

Fourier Volume Rendering

© Weiskopf/Machiraju/Moller
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Fourier Volume Rendering

e Jom Malzbender 1993
e [otsuka, Levoy 1993

e non-"traditional” methoad

® rendering in the Fourier domain

e pbased on Fourier Projection Slice
Theorem

e very efficient
¢ |ots of accuracy problems

© Weiskopf/Machiraju/Moller 108



Projection Slice Theorem

e Relates a slice of the Fourier transtorm to
an integral in one direction in spatial

domal n Spatial Domain Frequency Domain
T SNy A
) ‘ ’ !
| | f(p) ! _—
| ! N FE
. projection f
Y ‘l’ slice extraction

IFT
-
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FVR - Basic Algorithm

® Preprocessing:
— pre-multiply spatial domain
— zero-pad the volume
— compute Fourier transform

o Actual Algorithm
— compute viewing angle
— extract 2D slice
— Inverse 2D Fourier transform of slice

© Weiskopf/Machiraju/Moller 110



FVR - Resampling revisited

Original function Sampled function

/N

Acquisition
—

Reconstructed

Function Re-sampled function

Resampli ng

>
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FVR - Pre-multiplication

e Extracting slice requires a resampling
step

e Wwhat impact has sampling in Frequency
domain to the spatlal domam?’?

ARN o,
wo ] oo .
n A

mulliplicati

112




FVR - Pre-multiplication (2)

e Or mathematically:

e Reconstruction = convolution with an
interpolation filter H:

* Fr(w) = F(K)*H(s)
e and In spatial domain:
o fr(x) = f(x).h(x)
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FVR - Pre-multiplication (3)

Spatial Domain  Frequency Domain
1v) /\/\
—- | [(s) % Pm(s)
X
pm(x) M
X
/l(.\') /_\ II/‘\') *é
|
fix)
s | [(5)

© Weiskopf/Machiraju/Moller
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-V

R - zero-padding

e Separates the spatial replicas further
e Decreases artifacts in spatial domain
¢ zero-padded function:

Original function

_/

Resampled function

k_ Reiampling M

© Weiskopf/Machiraju/Moller
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FVR - Efficiency

e Typical Fourier Transform = O(N3*NS)
e Fast Fourier Tranform = O(N3*logN)
e Hence:
— pre-processing = O(N**logN)
— slicing = O(N?)
— inverse Fourier Transform (slice) =
O(N“*logN)

e other rendering algorithm O(N°)
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Number of Muitiplications + Additions

1012

FVR - Efficiency (2)

10m)

10104

"f

5D Invetse Hartley Transform Only

(m = resampling kemel size)

| L T

acing or
Voxyg p'ro%cction’

~FVR with m=

m=
m=
m=

3

- —

resampling

R

N, where N3 is size of DataSet

© Weiskopf/Machiraju/Moller
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FVR - Depth-Shading

e Basic algorithm produces x-ray type
Images

e No depth information is conveyed

e depth incoding: f(x).d(x)

e Fourier Transform (with interpolation):
* F(w)"Dlw)"H(w)

e Hence pre-multiply H with D!
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FVR - Depth-Shading (2)

e | inear depth cueing:
d,(x)=C,,
e Fourier Transform
D,(w)= -
e Combined filter:
H'(@)=D;(0)H(0)
Ccu

. (v H(w))+C,, H(w)

(V ><x)+ Cavg

Coe (7 30)+ € 5(w)

i27C we
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FVR - Ambient-Shading

* [ypical ambient component: C _.L . O.
— G - color
— L - constant
— O - object color

e approximation: C . L . f(x)
e Fourier transform:

Coni L F L G Jrp,, (6 ) H ()
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FVR - Diffuse-Shading

e [ypical diffuse component:

Cair L O, max(O, NxL)

— N - normal vector
— L - light vector

e doesn’t have a simple Fourier transform
N A

e gpproximation - illumination by
hemisphere

dzf dzf 5 ‘Vf(x)

© Weiskopf/Machiraju/Moller
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FVR - Diffuse-Shading (2)

® approximation:

Cdl.del.f%‘Vf(x) 1+
e Fourier transform:
E V), () H )+ |
\+m(wa)F{f(x)Xpm(x)}*H(w)/

C

a’ifL

dif
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FVR - Diffuse-Shading (3)

./{j(cl') ]}m(w’]}

N

H{(s)

./{ lvf(‘l')l pm{E) }

Spectra

@racted slice
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Overview

_ight: Volume rendering equation
Discretized: Compositing schemes

Ray casting
— Acceleration technigues for ray casting

Fourier Volume Rendering

© Weiskopf/Machiraju/Moller
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Cell Projection

e [For unstructured grids
e Alternative to ray casting (Garrity’s alg.)
e Projected Tetrahedra (PT) algorithm

[P. Shirley, A. Tuchman: A polygonal
approximation to direct scalar volume
rendering, Volvis 1990, p. 63-70]
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Cell Projection

e Basic idea

N \.‘ P, Tetrahedron Projection Triangle Decom position
Rl A A AN 4
classes 1a & 1b 3 triangles
Py . :

- ﬂ

S N

Blending

Final Image e
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Cell Projection

e Spatial sorting for all tetrahedra in a grid
— Back-to-front or front-to-back strategies possible
— Compositing is not commutative

e MPVO algorithm: Meshed Polyhedra Visibility

Orderi Mg [P, wiliams: Visibility Ordering Meshed Polyhedra, ACM Transactions on
Graphics, 11(2), 1992, p. 103-126]

— Only for acyclic, convex grids

=

convex NON-CONVEX.....aju/Msller cyclic 127



Cell Projection

e Decomposition of non-tetrahedral
unstructured grids into tetrahedra

— PT can be applied for all types of
unstructured grids
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Cell Projection

o Alternative to working directly on
unstructured grids

— Resampling approaches, adaptive mesh
refinement (AMR)
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