Vector Visualization

3D Image Processing Torsten Möller / Alireza Ghane

© Weiskopf/Machiraju/Möller

Overview

- Problem setting
- Vector calculus
- Characteristic lines
- Arrows and glyphs
- Particle tracing and mapping methods
- Particle tracing on grids
- Line integral convolution
- Texture advection
- Topology-based visualization
- 3D vector fields

Readings

- "The Visualization Handbook":
 - Chapter 12 (Overview of Flow Visualization)
 - Chapter 13 (Flow Textures)
 - Chapter 17 (Topological Methods for Flow Visualization)
- "Scientific Visualization":
 - Chapter 14 (Particle Tracing Algorithms for 3D Curvilinear Grids)

Problem Setting

- Vector data set
- Represent direction and magnitude
- Given by an *n*-tupel (f_1, \dots, f_n) with $f_k = f_k(x_1, \dots, x_n), n \ge 2$ and $1 \le k \le n$
- Specific transformation properties
- Typically n = 2 or n = 3

Problem Setting

- Main application of vector field visualization is flow visualization
 - Motion of fluids (gas, liquids)
 - Geometric boundary conditions
 - Velocity (flow) field **v(x,t)**
 - Pressure *p*
 - Temperature T
 - Vorticity $\nabla \times \mathbf{V}$
 - Density ρ
 - Conservation of mass, energy, and momentum
 - Navier-Stokes equations
 - CFD (Computational Fluid Dynamics)

🗢 พบารหอยากพาสอากาสามาพาอกอา

• •

Problem Setting

Problem Setting

- Flow visualization classification
 - Dimension (2D or 3D)
 - Time-dependency: stationary (steady) vs.
 instationary (unsteady)
 - Grid type
 - Compressible vs. incompressible fluids
- In most cases numerical methods required for flow visualization

Vector Calculus

- Review of basics of vector calculus
- Deals with vector fields and various kinds of derivatives
- Flat (Cartesian) manifolds only
- Cartesian coordinates only
- 3D only

Vector Calculus

- Scalar function $ho(oldsymbol{x},t)$
- Gradient $\nabla \rho(\boldsymbol{x}, t) = \begin{pmatrix} \frac{\partial}{\partial x} \rho(\boldsymbol{x}, t) \\ \frac{\partial}{\partial y} \rho(\boldsymbol{x}, t) \\ \frac{\partial}{\partial z} \rho(\boldsymbol{x}, t) \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \rho(\boldsymbol{x}, t)$
 - Gradient points into direction of maximum change of $\rho(\pmb{x},t)$
 - Laplace $\Delta \rho(\boldsymbol{x},t) = \nabla \cdot \nabla \rho(\boldsymbol{x},t)$

$$= \frac{\partial^2}{\partial x^2} \rho(\boldsymbol{x}, t) + \frac{\partial^2}{\partial y^2} \rho(\boldsymbol{x}, t) + \frac{\partial^2}{\partial z^2} \rho(\boldsymbol{x}, t)$$

Vector Calculus

- Vector function **v(x**,t)
- Jacobi matrix ("Gradient tensor")

$$\boldsymbol{J} = \nabla \overrightarrow{v}(\boldsymbol{x}, t) = \begin{pmatrix} \frac{\partial}{\partial x} v_x \frac{\partial}{\partial y} v_x \frac{\partial}{\partial z} v_x \\ \frac{\partial}{\partial x} v_y \frac{\partial}{\partial y} v_y \frac{\partial}{\partial z} v_y \\ \frac{\partial}{\partial x} v_z \frac{\partial}{\partial y} v_z \frac{\partial}{\partial z} v_z \end{pmatrix}$$

• Divergence $\operatorname{div} \overrightarrow{v}(\boldsymbol{x}, t) = \nabla \times \overrightarrow{v}(\boldsymbol{x}, t) = \frac{\partial}{\partial x} v_x + \frac{\partial}{\partial y} v_y + \frac{\partial}{\partial z} v_z$

Characteristic Lines

- Types of characteristic lines in a vector field:
 - Streamlines: tangential to the vector field
 - Pathlines: trajectories of massless particles in the flow
 - Streaklines: trace of dye that is released into the flow at a fixed position
 - Time lines (time surfaces): propagation of a line (surface) of massless elements in time

Characteristic Lines

- Streamlines
 - Tangential to the vector field
 - Vector field at an arbitrary, yet fixed time t
 - Streamline is a solution to the initial value problem of an ordinary differential equation:

(seed point \mathbf{x}_0) ordinary differential equation

– Streamline is curve L(u) with the parameter u

Video

- IntroParticles2D
- IntroParticles3D
- IntroStreamlines

Characteristic Lines

- Pathlines
 - Trajectories of massless particles in the flow
 - Vector field can be time-dependent (unsteady)
 - Pathline is a solution to the initial value problem of an ordinary differential equation:

$$\vec{L}(0) = \vec{x}_0 \qquad \frac{d\vec{L}(u)}{du} = \vec{v}(\vec{L}(u), u)$$

Video

• IntroPathlines

Characteristic Lines

- Streaklines
 - Trace of dye that is released into the flow at a fixed position
 - Connect all particles that passed through a certain position
- Time lines (time surfaces)
 - Propagation of a line (surface) of massless elements in time
 - Idea: "consists" of many point-like particles that are traced
 - Connect particles that were released simultaneously

Video

- IntroCylinderStreak
- CylinderStreakOverTau

Characteristic Lines

Comparison of pathlines, streaklines, and streamlines

 Pathlines, streaklines, and streamlines are identical for steady flows

Streamlines

Timelines

Streaklines

and the second s

Overview

- Problem setting
- Vector calculus
- Characteristic lines
- Arrows and glyphs
- Particle tracing and mapping methods
- Particle tracing on grids
- Line integral convolution
- Texture advection
- Topology-based visualization
- 3D vector fields

- Visualize **local** features of the vector field:
 - Vector itself
 - Vorticity
 - Extern data: temperature, pressure, etc.
- Important elements of a vector:
 - Direction
 - Magnitude
 - Not: components of a vector
- Approaches:
 - Arrow plots
 - Glyphs
- Direct mapping Weiskopf/Machiraju/Möller

- Arrows visualize
 - Direction of vector field
 - Orientation
 - Magnitude:
 - Length of arrows
 - Color coding

• Arrows

• Glyphs

Can visualize more features of the vector field (flow field)

- Advantages and disadvantages of glyphs and arrows:
 - + Simple
 - + 3D effects
 - Inherent occlusion effects
 - Poor results if magnitude of velocity changes rapidly (Use arrows of constant length and color code magnitude)

- Basic idea: trace particles
- Characteristic lines
- Mapping approaches:
 - Lines
 - Surfaces
 - Individual particles
 - Texture
 - Sometimes animated
- Density of visual representation
 - Sparse = only a few visual patterns (e.g. only a few streamlines)
 - Dense = complete coverage of the domain by visual structures

• Pathlines

- Stream balls
 - Encode additional scalar value by radius

• Streaklines

154547

- Stream ribbons
 - Trace two close-by particles
 - Keep distance constant

- Stream tubes
 - Specify contour, e.g. triangle or circle, and trace it through the flow

© Weiskopf/Machiraju/Möller

• Motion of individual particles (cavity.avi)
Overview

- Problem setting
- Vector calculus
- Characteristic lines
- Arrows and glyphs
- Particle tracing and mapping methods
- Particle tracing on grids
- Line integral convolution
- Texture advection
- Topology-based visualization
- 3D vector fields

Mapping Methods Based on Particle Tracing

- LIC (Line Integral Convolution)
 - Texture representation

Mapping Methods Based on Particle Tracing

- Unsteady flow advection-convolution
 - Animation

Particle Tracing on Grids

- Vector field given on a grid
- Solve $L(0) = \mathbf{x}_0$, $\frac{dL(t)}{dt} = \mathbf{v}(L(t),t)$ for the pathline

- Incremental integration
- Discretized path of the particle

Particle Tracing on Grids

- Most simple case: Cartesian grid for the pathline
- Basic algorithm: Select start point (seed point) Find cell that contains start point *point location* While (particle in domain) do Interpolate vector field at interpolation current position integration Integrate to new position point location Find new cell Draw line segment between latest particle positions Endwhile

Particle Tracing on Grids

- Point location (cell search) on Cartesian grids:
 - Indices of cell directly from position (x, y, z)
 - For example: $i_x = (x x_0) / \Delta x$
 - Simple and fast
- Interpolation on Cartesian grids:
 - Bilinear (in 2D) or trilinear (in 3D) interpolation
 - Required to compute the vector field (= velocity) inside a cell
 - Component-wise interpolation
 - Based on offsets (= local coordinates within cell)

- Line Integral Convolution (LIC)
 - Visualize dense flow fields by imaging its integral curves
 - Cover domain with a random texture (so called ,input texture', usually stationary white noise)
 - Blur (convolve) the input texture along the path lines using a specified filter kernel
- Look of 2D LIC images
 - Intensity distribution along path lines shows high correlation
 - No correlation
 between
 neighboring
 path lines

- Idea of Line Integral Convolution (LIC)
 - Global visualization technique
 - Dense representation
 - Start with random texture
 - Smear out along stream lines

- Algorithm for 2D LIC
 - Let $t \rightarrow \Phi_0(t)$ be the path line containing the point (x_0, y_0)
 - T(x,y) is the randomly generated input texture Compute the pixel intensity as:

 $I(x_0, y_0) = \int_{-L}^{L} k(t) \times T(\phi_0(t)) dt$

convolution with kernel

• Kernel:

- Finite support [-*L*,*L*]
- Normalized
- Often simple box filter
- Often symmetric (isotropic)

- Algorithm for 2D LIC
 - Convolve a random texture along the streamlines

- Fast LIC
- Problems with LIC
 - New streamline is computed at each pixel
 - Convolution (integral) is computed at each pixel
 - Slow
- Idea:
 - Compute very long streamlines
 - Reuse these streamlines for many different pixels
 - Incremental computation of the convolution integral

- Oriented LIC (OLIC):
 - Visualizes orientation (in addition to direction)
 - Sparse texture
 - Anisotropic convolution kernel
 - Acceleration: integrate individual drops and compose them to final image

© Weiskopf/Machiraju/Möller

• Oriented LIC (OLIC)

• Video ---

CylinderStreakMovieNoTitleLICAtEnd

- Outlook
 - GPU LIC for real-time visualization
 - Texture advection (also on GPUs) for an incremental computation
 - Especially useful for time-dependent vector fields
 - Extension to 2.5D and 3D data sets

Overview

- Problem setting
- Vector calculus
- Characteristic lines
- Arrows and glyphs
- Particle tracing and mapping methods
- Particle tracing on grids
- Line integral convolution
- Texture advection
- Topology-based visualization
- 3D vector fields

• Idea:

Do not draw "all" streamlines, but only the "important" streamlines

- Show only topological skeletons
- Important points in the vector field: critical points
- Critical points:
 - Points where the vector field vanishes: v = 0
 - Points where the vector magnitude goes to zero and the vector direction is undefined
 - Sources, sinks, ...
- The critical points are connected to divide the flow into regions with similar properties
- Structure of particle behavior for t $\rightarrow \infty$

- Finding "critical" points
- what is critical in a flow?
- Well when it doesn't flow anymore!
- I.e critical points are places without change: v = 0!
- Try to
 - find these places
 - classify them

- First we need understand such places!
- two flows can cancel each other out
- center of vortex ...
- Look at derivative of v!

$$v_i = v_i^{(0)} + \left(x_j - x_j^{(0)}\right) \frac{\partial v_i}{\partial x_j} + \dots$$

- 1. Find critical points
- pretty much iso-value algorithm
- but with a twist since three components are zero
- find iso-values for each component and then only consider cells where all three intersect
- not enough sub-divide potential cells until a certain bound is reached.

- 2. classify critical points
- according to what is happening in the neighborhood - attracting or repelling or a combination thereof
- determined by derivative of velocity
- if positive then things move away
- if negative things come closer
- this is 1D

- One dimension:
- if derivative of velocity is:
 - positive: things move away (repelling)
 - negative: things come closer (attracting)

$$v = v^{(0)} + (x - x^{(0)})\frac{\partial v}{\partial x} + \dots$$

- 2D classification (and higher D):
- according to eigen-values of derivative matrix

- 3D classification
- more complicated

- Taylor expansion for the velocity field around a critical point r_c: v(r) = v(r_c) + ∇v ×(r - r_c) + O(r - r_c)² ≈ J ×(r - r_c)
- Divide Jacobian into symmetric and antisymmetric parts
 J = J_s + J_a = ((J + J^T) + (J - J^T))/2

 $\mathbf{J}_{\mathrm{s}} = (\mathbf{J} + \mathbf{J}^{\mathrm{T}})/2$ $\mathbf{J}_{\mathrm{a}} = (\mathbf{J} - \mathbf{J}^{\mathrm{T}})/2$

- The symmetric part can be solved to give real eigenvalues R and real eigenvectors $J_s r_s = R r_s$ $R = R_1, R_2, R_3$
 - Eigenvectors \mathbf{r}_s are an orthonormal set of vectors
 - Describes change of size along eigenvectors
 - Describes flow into or out of region around critical point

- Anti-symmetric part $J_{a} \times d = \frac{1}{2} (J - J^{T}) \times d =$ $\frac{1}{2} \begin{pmatrix} 0 & \frac{\partial \mathbf{v}_{x}}{\partial y} - \frac{\partial \mathbf{v}_{y}}{\partial x} & \frac{\partial \mathbf{v}_{x}}{\partial z} - \frac{\partial \mathbf{v}_{z}}{\partial x} \\ \frac{\partial \mathbf{v}_{y}}{\partial x} - \frac{\partial \mathbf{v}_{x}}{\partial y} & 0 & \frac{\partial \mathbf{v}_{y}}{\partial z} - \frac{\partial \mathbf{v}_{z}}{\partial y} \\ \frac{\partial \mathbf{v}_{z}}{\partial x} - \frac{\partial \mathbf{v}_{x}}{\partial z} & \frac{\partial \mathbf{v}_{z}}{\partial y} & \frac{\partial \mathbf{v}_{y}}{\partial z} & 0 \\ \frac{\partial \mathbf{v}_{z}}{\partial x} - \frac{\partial \mathbf{v}_{x}}{\partial z} & \frac{\partial \mathbf{v}_{z}}{\partial y} & \frac{\partial \mathbf{v}_{y}}{\partial z} & 0 \\ \end{bmatrix} \begin{pmatrix} \mathbf{v}_{z} + \mathbf{v}_{z} + \mathbf{v}_{z} \\ \frac{\partial \mathbf{v}_{z}}{\partial x} - \frac{\partial \mathbf{v}_{z}}{\partial y} & \frac{\partial \mathbf{v}_{z}}{\partial z} \\ \frac{\partial \mathbf{v}_{z}}{\partial y} & \frac{\partial \mathbf{v}_{z}}{\partial z} & 0 \\ \end{bmatrix} \begin{pmatrix} \mathbf{v}_{z} + \mathbf{v}_{z} \\ \mathbf{v}_{z} + \mathbf{v}_{z} \\ \frac{\partial \mathbf{v}_{z}}{\partial y} & \frac{\partial \mathbf{v}_{z}}{\partial z} \\ \frac{\partial \mathbf{v}_{z}}{\partial y} & \frac{\partial \mathbf{v}_{z}}{\partial z} \\ \end{bmatrix} \begin{pmatrix} \mathbf{v}_{z} + \mathbf{v}_{z} \\ \mathbf{v}_{z} \\ \frac{\partial \mathbf{v}_{z}}{\partial y} & \frac{\partial \mathbf{v}_{z}}{\partial z} \\ \frac{\partial \mathbf{v}_{z}}{\partial z} \\ \frac{\partial \mathbf{v}_{z}}{\partial z} & \frac{\partial \mathbf{v}_{z}}{\partial z} \\ \frac{\partial \mathbf{v}_{z}}{\partial z} \\ \frac{$
 - Describes rotation of difference vector $\mathbf{d} = (\mathbf{r} - \mathbf{r}_c)$
 - The anti-symmetric part can be solved to give imaginary eigenvalues I

• 2D structure: eigenvalues are (R_1, R_2) and (I_1, I_2)

 $I_1, I_2 = 0$

Repelling focus $R_1, R_2 > 0$

 $I_1, I_2 \neq 0$

• 2D structure: eigenvalues are (R_1, R_2) and (I_1, I_2)

Attracting node $R_1, R_2 < 0$ $I_1, I_2 = 0$

Attracting focus $R_1, R_2 < 0$ $I_1, I_2 \neq 0$

Center $R_1, R_2 = 0$ $I_1, I_2 \neq 0$

- Also in 3D
 - Some examples

Attracting node $R_1, R_2, R_3 < 0$ $I_1, I_2, I_3 = 0$

Center $R_1, R_2 = 0, R_3 > 0$ $I_1, I_2 \neq 0, I_3 = 0$

© Weiskopf/Machiraju/Möller

- Mapping to graphical primitives: streamlines
 - Start streamlines close to critical points
 - Initial direction along the eigenvectors
- End particle tracing at
 - Other "real" critical points
 - Interior boundaries: attachment or detachment points
 - Boundaries of the computational domain

- How to find critical points
 - Cell search (for cells which contain critical points):
 - Mark vertices by (+,+), (–, –), (+, –) or (–,+), depending on the signs of v_x and v_y
 - Determine cells that have vertices where the sign changes in both components –> these are the cells that contain critical points
 - How to find critical points within a (quad) cell ?
 - Find the critical points by interpolation
 - Determine the intersection of the isolines (c=0) of the two components, (+,+)

 $V_{v}=0$

(+<u>6</u>9)

 $V_x=0$

(+,-

- Two bilinear equations to be solved
- Critical points are the solutions within the cell boundaries

- How to find critical points (cont.)
 - How to find critical points within simplex?
 - Based on barycentric interpolation
 - Solve analytically
 - Alternative method:
 - Iterative approach based on 2D / 3D nested intervals
 - Recursive subdivision into 4 / 8 subregions if critical point is contained in cell

Example of a topological graph of 2D flow field

• Further examples of topology-guided streamline positioning

Vector Field Topology

• Saddle connectors in 3D

Vector Field Topology

• Saddle connectors in 3D

Vector Field Topology

- Summary:
 - Draw only relevant streamlines (topological skeleton)
 - Partition domain in regions with similar flow features
 - Based on critical points
 - Good for 2D stationary flows
 - Unsteady flows?
 - 3D?

- Most algorithms can be applied to 2D and 3D vector fields
- Main problem in 3D: effective mapping to graphical primitives
- Main aspects:
 - Occlusion
 - Amount of (visual) data
 - Depth perception

- Approaches to occlusion issue:
 - Sparse representations
 - Animation
 - Color differences to distinguish separate objects
 - Continuity
- Reduction of visual data:
 - Sparse representations
 - Clipping
 - Importance of semi-transparency

• Missing continuity

 Color differences to identify connected structures

Reduction of visual data
– 3D LIC

- Reduction of visual data
 - Clipping
 - Masking

- Reduction of visual data
 - 3D importance function
 - Feature extraction, often interactive

Vortex extraction with λ_2

- Improving spatial perception:
 - Depth cues
 - Perspective
 - Occlusion
 - Motion parallax
 - Stereo disparity
 - Color (atmospheric, fogging)
 - Halos
 - Orientation of structures by shading (highlights)

• No illumination

 Phong illumination

• Cool/warm

• Illuminated streamlines

• Halos

Without halos

With halos