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Overview
• Problem setting 
• Vector calculus 
• Characteristic lines 
• Arrows and glyphs 
• Particle tracing and mapping methods 
• Particle tracing on grids 
• Line integral convolution 
• Texture advection 
• Topology-based visualization 
• 3D vector fields
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Readings

• “The Visualization Handbook”: 
– Chapter 12 (Overview of Flow Visualization) 
– Chapter 13 (Flow Textures) 
– Chapter 17 (Topological Methods for Flow 

Visualization) 
• “Scientific Visualization”: 

– Chapter 14 (Particle Tracing Algorithms for 
3D Curvilinear Grids)
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Problem Setting

• Vector data set 
• Represent direction and magnitude 
• Given by an n-tupel (f1,...,fn) with  

fk=fk(x1,...,xn), n ≥ 2 and 1≤ k ≤ n 
• Specific transformation properties  
• Typically n = 2 or n = 3 



© Weiskopf/Machiraju/Möller 5

Problem Setting
• Main application of vector field visualization 

is flow visualization 
– Motion of fluids (gas, liquids)  
– Geometric boundary conditions 
– Velocity (flow) field v(x,t) 
– Pressure p 
– Temperature T 
– Vorticity ∇×v 
– Density ρ
– Conservation of mass, energy, and momentum 
– Navier-Stokes equations 
– CFD (Computational Fluid Dynamics)
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Problem Setting

Flow visualization  
based on CFD data
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Problem Setting

• Flow visualization – classification 
– Dimension (2D or 3D) 
– Time-dependency: stationary (steady) vs. 

instationary (unsteady) 
– Grid type 
– Compressible vs. incompressible fluids 

• In most cases numerical methods 
required for flow visualization
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Vector Calculus

• Review of basics of vector calculus 
• Deals with vector fields and various kinds 

of derivatives 
• Flat (Cartesian) manifolds only 
• Cartesian coordinates only 
• 3D only
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Vector Calculus

• Scalar function 
• Gradient 

• Gradient points into direction of 
maximum change of  

• Laplace

⇢(x, t)
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Vector Calculus

• Vector function v(x,t) 
• Jacobi matrix (“Gradient tensor”) 

• Divergence
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Characteristic Lines

• Types of characteristic lines in a vector 
field: 
– Streamlines: tangential to the vector field 
– Pathlines: trajectories of massless particles 

in the flow 
– Streaklines: trace of dye that is released 

into the flow at a fixed position 
– Time lines (time surfaces): propagation of a 

line (surface) of massless elements in time
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Characteristic Lines

• Streamlines 
– Tangential to the vector field 
– Vector field at an arbitrary, yet fixed time t 
– Streamline is a solution to the initial value 

problem of an ordinary differential equation: 

– Streamline is curve L(u) with the parameter u

initial value 
(seed point x0)

ordinary differential equation

�L(0) = �x0
d�L(u)

du
= �v(�L(u), t)
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Video

• IntroParticles2D 
• IntroParticles3D 
• IntroStreamlines

14



• Pathlines 
– Trajectories of massless particles in the flow 
– Vector field can be time-dependent 

(unsteady) 
– Pathline is a solution to the initial value 

problem of an ordinary differential equation:
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Characteristic Lines

�L(0) = �x0
d�L(u)

du
= �v(�L(u), u)
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Video

• IntroPathlines

16
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Characteristic Lines
• Streaklines 

– Trace of dye that is released into the flow at a 
fixed position 

– Connect all particles that passed through a 
certain position 

• Time lines (time surfaces) 
– Propagation of a line (surface) of massless 

elements in time 
– Idea: “consists” of many point-like particles that 

are traced 
– Connect particles that were released 

simultaneously
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Video

• IntroCylinderStreak 
• CylinderStreakOverTau

18
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Characteristic Lines

• Comparison of pathlines, streaklines, and 
streamlines 

• Pathlines, streaklines, and streamlines 
are identical for steady flows

t0 t1 t2 t3

pathline streaklinestreamline for t3 
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Mappings - Streak-lines
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Mappings - Streamlines
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Mappings - compare
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Mappings - Contours
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Overview
• Problem setting 
• Vector calculus 
• Characteristic lines 
• Arrows and glyphs 
• Particle tracing and mapping methods 
• Particle tracing on grids 
• Line integral convolution 
• Texture advection 
• Topology-based visualization 
• 3D vector fields
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Arrows and Glyphs 
• Visualize local features of the vector field: 

– Vector itself 
– Vorticity 
– Extern data: temperature, pressure, etc. 

• Important elements of a vector: 
– Direction 
– Magnitude 
– Not: components of a vector 

• Approaches: 
– Arrow plots 
– Glyphs 

• Direct mapping
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Arrows and Glyphs

• Arrows visualize 
– Direction of vector field 
– Orientation 
– Magnitude: 

• Length of arrows 
• Color coding
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Arrows and Glyphs

• Arrows
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Arrows and Glyphs

• Glyphs 
– Can visualize more features of the vector 

field (flow field)
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Arrows and Glyphs

• Advantages and disadvantages of glyphs 
and arrows: 
+ Simple 
+ 3D effects 
- 	Inherent occlusion effects 
- 	Poor results if magnitude of velocity 

changes rapidly (Use arrows of constant 
length and color code magnitude)
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Mapping Methods Based on 
Particle Tracing

• Basic idea: trace particles 
• Characteristic lines 
• Mapping approaches: 

– Lines 
– Surfaces 
– Individual particles 
– Texture 
– Sometimes animated 

• Density of visual representation 
– Sparse = only a few visual patterns (e.g. only a few 

streamlines) 
– Dense = complete coverage of the domain by visual 

structures
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Mapping Methods Based on 
Particle Tracing

• Pathlines
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Mapping Methods Based on 
Particle Tracing

• Stream balls 
– Encode additional scalar value by radius
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Mapping Methods Based on 
Particle Tracing

• Streaklines
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Mapping Methods Based on 
Particle Tracing

• Stream ribbons 
– Trace two close-by particles 
– Keep distance constant
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Mapping Methods Based on 
Particle Tracing

• Stream tubes 
– Specify contour, e.g. triangle or circle, and 

trace it through the flow 
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Mapping Methods Based on 
Particle Tracing

• Motion of individual particles (cavity.avi)
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Overview
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Mapping Methods Based on 
Particle Tracing

• LIC (Line Integral Convolution) 
– Texture representation 
– Dense
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Mapping Methods Based on 
Particle Tracing

• Unsteady flow advection-convolution 
– Animation
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Particle Tracing on Grids 

• Vector field given on a grid 
• Solve  

for the pathline 
• Incremental integration 
• Discretized path of the particle
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Particle Tracing on Grids 
• Most simple case: Cartesian  

grid for the pathline 
• Basic algorithm: 

Select start point (seed point) 

Find cell that contains start point point location 
While (particle in domain) do 

Interpolate vector field at  
current position   interpolation 

Integrate to new position        integration 
Find new cell    point location 
Draw line segment between latest  
particle positions 

Endwhile
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Particle Tracing on Grids
• Point location (cell search) on Cartesian 

grids: 
– Indices of cell directly from position (x, y, z) 
– For example: ix = (x – x0) / Δx 
– Simple and fast 

• Interpolation on Cartesian grids: 
– Bilinear (in 2D) or trilinear (in 3D) interpolation 
– Required to compute the vector field (= velocity) 

inside a cell 
– Component-wise interpolation 
– Based on offsets (= local coordinates within cell)
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Line Integral Convolution
• Line Integral Convolution (LIC) 

– Visualize dense flow fields by imaging its integral curves 
– Cover domain with a random texture (so called ‚input 

texture‘, usually stationary white noise) 
– Blur (convolve) the input texture along the path lines 

using a specified filter kernel 
• Look of 2D LIC images 

– Intensity distribution along path lines shows high 
correlation 

– No correlation  
between  
neighboring  
path lines
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Line Integral Convolution

• Idea of Line Integral Convolution (LIC) 
– Global visualization technique 
– Dense representation 
– Start with random texture 
– Smear out along stream lines
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Line Integral Convolution

• Algorithm for 2D LIC 
– Let  t → Φ0(t) be the path line containing the 

point (x0,y0) 
– T(x,y) is the randomly generated input texture 
– Compute the pixel intensity as: 

• Kernel: 
– Finite support [-L,L]  
– Normalized  
– Often simple box filter 
– Often symmetric (isotropic) 

L-L

1kernel 
k(t)

convolution with 
kernel
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Line Integral Convolution
• Algorithm for 2D LIC 

– Convolve a  
random texture 
along the 
streamlines
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Line Integral Convolution

Input noise T

Final image

Vector field

Convolution

L-L

kernel 
k(s)

Particle tracing
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Line Integral Convolution
• Fast LIC  
• Problems with LIC 

– New streamline is computed at each pixel 
– Convolution (integral) is computed at each pixel 
– Slow 

• Idea: 
– Compute very long streamlines 
– Reuse these streamlines for many different 

pixels 
– Incremental computation of the convolution 

integral
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Line Integral Convolution

• Oriented LIC (OLIC): 
– Visualizes orientation (in addition to direction) 
– Sparse texture 
– Anisotropic convolution kernel 
– Acceleration: integrate individual drops and 

compose them to final image

l-l

1 anisotropic 
convolution kernel
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Line Integral Convolution

• Oriented LIC (OLIC)
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• Video -- 
CylinderStreakMovieNoTitleLICAtEnd

51
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Line Integral Convolution

• Outlook 
– GPU LIC for real-time visualization 
– Texture advection (also on GPUs) for an 

incremental computation 
• Especially useful for time-dependent vector fields 

– Extension to 2.5D and 3D data sets
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Vector Field Topology
• Idea:  

Do not draw “all” streamlines, but only the “important” 
streamlines 

• Show only topological skeletons 
• Important points in the vector field: critical points 
• Critical points:  

– Points where the vector field vanishes: v = 0 
– Points where the vector magnitude goes to zero and the vector 

direction is undefined 
– Sources, sinks, … 

• The critical points are connected to  
divide the flow into regions with  
similar properties 

• Structure of particle behavior for t → ∞
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Vector Field Topology

• Finding “critical” points 
• what is critical in a flow? 
• Well - when it doesn’t flow anymore! 
• I.e - critical points are places without 

change: v = 0! 
• Try to  

– find these places 
– classify them
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Vector Field Topology

• First we need understand such places! 
• two flows can cancel each other out 
• center of vortex … 
• Look at derivative of v!
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Vector Field Topology

1. Find critical points 
• pretty much iso-value algorithm 
• but with a twist - since three components 

are zero 
• find iso-values for each component and 

then only consider cells where all three 
intersect 

• not enough - sub-divide potential cells 
until a certain bound is reached.
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Vector Field Topology

2. classify critical points 
• according to what is happening in the 

neighborhood - attracting or repelling or a 
combination thereof 

• determined by derivative of velocity 
• if positive then things move away 
• if negative things come closer 
• this is 1D
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Vector Field Topology

• One dimension: 
• if derivative of velocity is: 

– positive: things move away (repelling) 
– negative: things come closer (attracting)



© Weiskopf/Machiraju/Möller 60

Vector Field Topology

• 2D classification (and higher D): 
• according to eigen-values of derivative 

matrix
Attracting  
 node

Saddle

Repelling 
 focus

r

i

r

r
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Vector Field Topology

• 3D classification 
• more complicated

node

saddle

Spiral  
Saddle

r

i

r

r
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Vector Field Topology

• Taylor expansion for the velocity field 
around a critical point rc: 

• Divide Jacobian into symmetric and anti-
symmetric parts 
J = Js + Ja  = ((J + JT) + (J - JT))/2  

Js = (J + JT)/2 
Ja = (J - JT)/2
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Vector Field Topology

• The symmetric part can be solved to give 
real eigenvalues R and real eigenvectors 

– Eigenvectors rs are an orthonormal set of 
vectors 

– Describes change of size along eigenvectors 
– Describes flow into or out of region around 

critical point
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Vector Field Topology

• Anti-symmetric part 

– Describes rotation of difference vector  
d = (r - rc) 

– The anti-symmetric part can be solved to 
give imaginary eigenvalues I
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Vector Field Topology

• 2D structure: eigenvalues  
are (R1, R2) and (I1,I2) 

Repelling node 
R1, R2 > 0 
I1,I2  = 0

Repelling focus 
R1, R2 > 0 
I1,I2  ≠ 0

Saddle point 
R1 * R2 < 0 
I1,I2  = 0
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Vector Field Topology

• 2D structure: eigenvalues  
are (R1, R2) and (I1,I2)

Attracting node 
R1, R2 < 0 
I1,I2  = 0

Attracting focus 
R1, R2 < 0 
I1,I2 ≠  0

Center 
R1, R2 = 0 
I1,I2  ≠ 0
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Vector Field Topology

• Also in 3D 
– Some examples

Attracting node 
R1, R2 , R3 < 0 
I1,I 2,I3  = 0

Center 
R1, R2 = 0, R3 > 0  
I1,I2  ≠ 0, ,I3  = 0
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Vector Field Topology

• Mapping to graphical primitives: 
streamlines 
– Start streamlines close to critical points 
– Initial direction along the eigenvectors 

• End particle tracing at 
– Other “real” critical points 
– Interior boundaries: attachment or 

detachment points 
– Boundaries of the computational domain
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Vector Field Topology
• How to find critical points 

– Cell search (for cells which contain critical points): 
• Mark vertices by (+,+), (–, –), (+, –) or (–,+), depending on 

the signs of vx and vy 

• Determine cells that have vertices where the sign changes 
in both components –> these are the cells that contain 
critical points 

– How to find critical points within a (quad) cell ? 
• Find the critical points by interpolation 
• Determine the intersection of the  

isolines (c=0) of the two components,  
• Two bilinear equations to be solved 
• Critical points are the solutions within  

the cell boundaries

(+,+) (+,+) (+,+)

(–,–) (+,–) (+,–)

vx=0
vy=0
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Vector Field Topology

• How to find critical points (cont.) 
– How to find critical points within simplex? 

• Based on barycentric interpolation 
• Solve analytically 

– Alternative method:  
• Iterative approach based on 2D / 3D nested 

intervals 
• Recursive subdivision into 4 / 8 subregions if 

critical point is contained in cell
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Vector Field Topology

• Example of a topological graph of 2D 
flow field
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Vector Field Topology

• Further examples of topology-guided 
streamline positioning
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Vector Field Topology

• Saddle connectors in 3D
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Vector Field Topology

• Saddle connectors in 3D
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Vector Field Topology

• Summary: 
– Draw only relevant streamlines (topological 

skeleton) 
– Partition domain in regions with similar flow 

features 
– Based on critical points 
– Good for 2D stationary flows 
– Unsteady flows? 
– 3D?
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3D Vector Fields

• Most algorithms can be applied to 2D 
and 3D vector fields 

• Main problem in 3D: effective mapping to 
graphical primitives 

• Main aspects: 
– Occlusion 
– Amount of (visual) data 
– Depth perception
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3D Vector Fields

• Approaches to occlusion issue: 
– Sparse representations 
– Animation 
– Color differences to distinguish separate 

objects 
– Continuity  

• Reduction of visual data: 
– Sparse representations 
– Clipping 
– Importance of semi-transparency
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3D Vector Fields

• Missing continuity
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3D Vector Fields

• Color differences to identify connected 
structures
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3D Vector Fields

• Reduction of visual data 
– 3D LIC
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3D Vector Fields

• Reduction of visual data 
– Clipping 
– Masking
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3D Vector Fields

• Reduction of visual data 
– 3D importance function 
– Feature extraction, often interactive

Vortex extraction  
with λ2
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3D Vector Fields

• Improving spatial perception: 
– Depth cues 

• Perspective 
• Occlusion 
• Motion parallax 
• Stereo disparity 
• Color (atmospheric, fogging) 

– Halos 
– Orientation of structures by shading 

(highlights)
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3D Vector Fields

• No illumination
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3D Vector Fields

• Phong  
illumination
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3D Vector Fields

• Cool/warm
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3D Vector Fields

• Illuminated streamlines
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3D Vector Fields

• Halos

Without halos With halos


