
© Weiskopf/Machiraju/Möller

Vector Visualization

3D Image Processing 
Torsten Möller / Alireza Ghane

© Weiskopf/Machiraju/Möller 2

Overview
• Problem setting
• Vector calculus
• Characteristic lines
• Arrows and glyphs
• Particle tracing and mapping methods
• Particle tracing on grids
• Line integral convolution
• Texture advection
• Topology-based visualization
• 3D vector fields

© Weiskopf/Machiraju/Möller 3

Readings

• “The Visualization Handbook”:
– Chapter 12 (Overview of Flow Visualization)
– Chapter 13 (Flow Textures)
– Chapter 17 (Topological Methods for Flow

Visualization)
• “Scientific Visualization”:

– Chapter 14 (Particle Tracing Algorithms for
3D Curvilinear Grids)

© Weiskopf/Machiraju/Möller 4

Problem Setting

• Vector data set
• Represent direction and magnitude
• Given by an n-tupel (f1,...,fn) with  

fk=fk(x1,...,xn), n ≥ 2 and 1≤ k ≤ n
• Specific transformation properties
• Typically n = 2 or n = 3

© Weiskopf/Machiraju/Möller 5

Problem Setting
• Main application of vector field visualization

is flow visualization
– Motion of fluids (gas, liquids)
– Geometric boundary conditions
– Velocity (flow) field v(x,t)
– Pressure p
– Temperature T
– Vorticity ∇×v
– Density ρ
– Conservation of mass, energy, and momentum
– Navier-Stokes equations
– CFD (Computational Fluid Dynamics)

© Weiskopf/Machiraju/Möller 6

© Weiskopf/Machiraju/Möller 7

Problem Setting

Flow visualization  
based on CFD data

© Weiskopf/Machiraju/Möller 8

Problem Setting

• Flow visualization – classification
– Dimension (2D or 3D)
– Time-dependency: stationary (steady) vs.

instationary (unsteady)
– Grid type
– Compressible vs. incompressible fluids

• In most cases numerical methods
required for flow visualization

© Weiskopf/Machiraju/Möller 9

Vector Calculus

• Review of basics of vector calculus
• Deals with vector fields and various kinds

of derivatives
• Flat (Cartesian) manifolds only
• Cartesian coordinates only
• 3D only

© Weiskopf/Machiraju/Möller 10

Vector Calculus

• Scalar function
• Gradient

• Gradient points into direction of
maximum change of

• Laplace

⇢(x, t)

⇢(x, t)
�⇢(x, t) = r ·r⇢(x, t)

=
@

2

@x

2
⇢(x, t) +

@

2

@y

2
⇢(x, t) +

@

2

@z

2
⇢(x, t)

r⇢(x, t) =

0

@
@

@x

⇢(x, t)
@

@y

⇢(x, t)
@

@z

⇢(x, t)

1

A =

0

@
@

@x

@

@y

@

@z

1

A ⇢(x, t)

© Weiskopf/Machiraju/Möller 11

Vector Calculus

• Vector function v(x,t)
• Jacobi matrix (“Gradient tensor”)

• Divergence

J = r�!v (x, t) =

0

B@

@

@x

v
x

@

@y

v
x

@

@z

v
x

@

@x

v
y

@

@y

v
y

@

@z

v
y

@

@x

v
z

@

@y

v
z

@

@z

v
z

1

CA

div�!v (x, t) = r⇥�!
v (x, t) =

@

@x

v

x

+
@

@y

v

y

+
@

@z

v

z

© Weiskopf/Machiraju/Möller 12

Characteristic Lines

• Types of characteristic lines in a vector
field:
– Streamlines: tangential to the vector field
– Pathlines: trajectories of massless particles

in the flow
– Streaklines: trace of dye that is released

into the flow at a fixed position
– Time lines (time surfaces): propagation of a

line (surface) of massless elements in time

© Weiskopf/Machiraju/Möller 13

Characteristic Lines

• Streamlines
– Tangential to the vector field
– Vector field at an arbitrary, yet fixed time t
– Streamline is a solution to the initial value

problem of an ordinary differential equation:

– Streamline is curve L(u) with the parameter u

initial value
(seed point x0)

ordinary differential equation

�L(0) = �x0
d�L(u)

du
= �v(�L(u), t)

© Weiskopf/Machiraju/Möller

Video

• IntroParticles2D
• IntroParticles3D
• IntroStreamlines

14

• Pathlines
– Trajectories of massless particles in the flow
– Vector field can be time-dependent

(unsteady)
– Pathline is a solution to the initial value

problem of an ordinary differential equation:

© Weiskopf/Machiraju/Möller 15

Characteristic Lines

�L(0) = �x0
d�L(u)

du
= �v(�L(u), u)

© Weiskopf/Machiraju/Möller

Video

• IntroPathlines

16

© Weiskopf/Machiraju/Möller 17

Characteristic Lines
• Streaklines

– Trace of dye that is released into the flow at a
fixed position

– Connect all particles that passed through a
certain position

• Time lines (time surfaces)
– Propagation of a line (surface) of massless

elements in time
– Idea: “consists” of many point-like particles that

are traced
– Connect particles that were released

simultaneously

© Weiskopf/Machiraju/Möller

Video

• IntroCylinderStreak
• CylinderStreakOverTau

18

© Weiskopf/Machiraju/Möller 19

Characteristic Lines

• Comparison of pathlines, streaklines, and
streamlines

• Pathlines, streaklines, and streamlines
are identical for steady flows

t0 t1 t2 t3

pathline streaklinestreamline for t3

© Weiskopf/Machiraju/Möller 20

Mappings - Streak-lines

© Weiskopf/Machiraju/Möller 21

Mappings - Streamlines

© Weiskopf/Machiraju/Möller 22

Mappings - compare

© Weiskopf/Machiraju/Möller 23

Mappings - Contours

© Weiskopf/Machiraju/Möller 24

Overview
• Problem setting
• Vector calculus
• Characteristic lines
• Arrows and glyphs
• Particle tracing and mapping methods
• Particle tracing on grids
• Line integral convolution
• Texture advection
• Topology-based visualization
• 3D vector fields

© Weiskopf/Machiraju/Möller 25

Arrows and Glyphs
• Visualize local features of the vector field:

– Vector itself
– Vorticity
– Extern data: temperature, pressure, etc.

• Important elements of a vector:
– Direction
– Magnitude
– Not: components of a vector

• Approaches:
– Arrow plots
– Glyphs

• Direct mapping

© Weiskopf/Machiraju/Möller 26

Arrows and Glyphs

• Arrows visualize
– Direction of vector field
– Orientation
– Magnitude:

• Length of arrows
• Color coding

© Weiskopf/Machiraju/Möller 27

Arrows and Glyphs

• Arrows

© Weiskopf/Machiraju/Möller 28

Arrows and Glyphs

• Glyphs
– Can visualize more features of the vector

field (flow field)

© Weiskopf/Machiraju/Möller 29

Arrows and Glyphs

• Advantages and disadvantages of glyphs
and arrows:
+ Simple
+ 3D effects
- 	Inherent occlusion effects
- 	Poor results if magnitude of velocity

changes rapidly (Use arrows of constant
length and color code magnitude)

© Weiskopf/Machiraju/Möller 30

Mapping Methods Based on
Particle Tracing

• Basic idea: trace particles
• Characteristic lines
• Mapping approaches:

– Lines
– Surfaces
– Individual particles
– Texture
– Sometimes animated

• Density of visual representation
– Sparse = only a few visual patterns (e.g. only a few

streamlines)
– Dense = complete coverage of the domain by visual

structures

© Weiskopf/Machiraju/Möller 31

Mapping Methods Based on
Particle Tracing

• Pathlines

© Weiskopf/Machiraju/Möller 32

Mapping Methods Based on
Particle Tracing

• Stream balls
– Encode additional scalar value by radius

© Weiskopf/Machiraju/Möller 33

Mapping Methods Based on
Particle Tracing

• Streaklines

© Weiskopf/Machiraju/Möller 34

Mapping Methods Based on
Particle Tracing

• Stream ribbons
– Trace two close-by particles
– Keep distance constant

© Weiskopf/Machiraju/Möller 35

Mapping Methods Based on
Particle Tracing

• Stream tubes
– Specify contour, e.g. triangle or circle, and

trace it through the flow

© Weiskopf/Machiraju/Möller 36

Mapping Methods Based on
Particle Tracing

• Motion of individual particles (cavity.avi)

© Weiskopf/Machiraju/Möller 37

Overview
• Problem setting
• Vector calculus
• Characteristic lines
• Arrows and glyphs
• Particle tracing and mapping methods
• Particle tracing on grids
• Line integral convolution
• Texture advection
• Topology-based visualization
• 3D vector fields

© Weiskopf/Machiraju/Möller 38

Mapping Methods Based on
Particle Tracing

• LIC (Line Integral Convolution)
– Texture representation
– Dense

© Weiskopf/Machiraju/Möller 39

Mapping Methods Based on
Particle Tracing

• Unsteady flow advection-convolution
– Animation

© Weiskopf/Machiraju/Möller 40

Particle Tracing on Grids

• Vector field given on a grid
• Solve  

for the pathline
• Incremental integration
• Discretized path of the particle

© Weiskopf/Machiraju/Möller 41

Particle Tracing on Grids
• Most simple case: Cartesian  

grid for the pathline
• Basic algorithm: 

Select start point (seed point)

Find cell that contains start point point location
While (particle in domain) do

Interpolate vector field at  
current position interpolation

Integrate to new position integration
Find new cell point location
Draw line segment between latest  
particle positions

Endwhile

© Weiskopf/Machiraju/Möller 42

Particle Tracing on Grids
• Point location (cell search) on Cartesian

grids:
– Indices of cell directly from position (x, y, z)
– For example: ix = (x – x0) / Δx
– Simple and fast

• Interpolation on Cartesian grids:
– Bilinear (in 2D) or trilinear (in 3D) interpolation
– Required to compute the vector field (= velocity)

inside a cell
– Component-wise interpolation
– Based on offsets (= local coordinates within cell)

© Weiskopf/Machiraju/Möller 43

Line Integral Convolution
• Line Integral Convolution (LIC)

– Visualize dense flow fields by imaging its integral curves
– Cover domain with a random texture (so called ‚input

texture‘, usually stationary white noise)
– Blur (convolve) the input texture along the path lines

using a specified filter kernel
• Look of 2D LIC images

– Intensity distribution along path lines shows high
correlation

– No correlation  
between  
neighboring  
path lines

© Weiskopf/Machiraju/Möller 44

Line Integral Convolution

• Idea of Line Integral Convolution (LIC)
– Global visualization technique
– Dense representation
– Start with random texture
– Smear out along stream lines

© Weiskopf/Machiraju/Möller 45

Line Integral Convolution

• Algorithm for 2D LIC
– Let t → Φ0(t) be the path line containing the

point (x0,y0)
– T(x,y) is the randomly generated input texture
– Compute the pixel intensity as:

• Kernel:
– Finite support [-L,L]
– Normalized
– Often simple box filter
– Often symmetric (isotropic)

L-L

1kernel
k(t)

convolution with 
kernel

© Weiskopf/Machiraju/Möller 46

Line Integral Convolution
• Algorithm for 2D LIC

– Convolve a  
random texture
along the
streamlines

© Weiskopf/Machiraju/Möller 47

Line Integral Convolution

Input noise T

Final image

Vector field

Convolution

L-L

kernel
k(s)

Particle tracing

© Weiskopf/Machiraju/Möller 48

Line Integral Convolution
• Fast LIC
• Problems with LIC

– New streamline is computed at each pixel
– Convolution (integral) is computed at each pixel
– Slow

• Idea:
– Compute very long streamlines
– Reuse these streamlines for many different

pixels
– Incremental computation of the convolution

integral

© Weiskopf/Machiraju/Möller 49

Line Integral Convolution

• Oriented LIC (OLIC):
– Visualizes orientation (in addition to direction)
– Sparse texture
– Anisotropic convolution kernel
– Acceleration: integrate individual drops and

compose them to final image

l-l

1 anisotropic
convolution kernel

© Weiskopf/Machiraju/Möller 50

Line Integral Convolution

• Oriented LIC (OLIC)

© Weiskopf/Machiraju/Möller

• Video --
CylinderStreakMovieNoTitleLICAtEnd

51

© Weiskopf/Machiraju/Möller 52

Line Integral Convolution

• Outlook
– GPU LIC for real-time visualization
– Texture advection (also on GPUs) for an

incremental computation
• Especially useful for time-dependent vector fields

– Extension to 2.5D and 3D data sets

© Weiskopf/Machiraju/Möller 53

Overview
• Problem setting
• Vector calculus
• Characteristic lines
• Arrows and glyphs
• Particle tracing and mapping methods
• Particle tracing on grids
• Line integral convolution
• Texture advection
• Topology-based visualization
• 3D vector fields

© Weiskopf/Machiraju/Möller 54

Vector Field Topology
• Idea:  

Do not draw “all” streamlines, but only the “important”
streamlines

• Show only topological skeletons
• Important points in the vector field: critical points
• Critical points:

– Points where the vector field vanishes: v = 0
– Points where the vector magnitude goes to zero and the vector

direction is undefined
– Sources, sinks, …

• The critical points are connected to  
divide the flow into regions with  
similar properties

• Structure of particle behavior for t → ∞

© Weiskopf/Machiraju/Möller 55

Vector Field Topology

• Finding “critical” points
• what is critical in a flow?
• Well - when it doesn’t flow anymore!
• I.e - critical points are places without

change: v = 0!
• Try to

– find these places
– classify them

© Weiskopf/Machiraju/Möller 56

Vector Field Topology

• First we need understand such places!
• two flows can cancel each other out
• center of vortex …
• Look at derivative of v!

© Weiskopf/Machiraju/Möller 57

Vector Field Topology

1. Find critical points
• pretty much iso-value algorithm
• but with a twist - since three components

are zero
• find iso-values for each component and

then only consider cells where all three
intersect

• not enough - sub-divide potential cells
until a certain bound is reached.

© Weiskopf/Machiraju/Möller 58

Vector Field Topology

2. classify critical points
• according to what is happening in the

neighborhood - attracting or repelling or a
combination thereof

• determined by derivative of velocity
• if positive then things move away
• if negative things come closer
• this is 1D

© Weiskopf/Machiraju/Möller 59

Vector Field Topology

• One dimension:
• if derivative of velocity is:

– positive: things move away (repelling)
– negative: things come closer (attracting)

© Weiskopf/Machiraju/Möller 60

Vector Field Topology

• 2D classification (and higher D):
• according to eigen-values of derivative

matrix
Attracting  
 node

Saddle

Repelling 
 focus

r

i

r

r

© Weiskopf/Machiraju/Möller 61

Vector Field Topology

• 3D classification
• more complicated

node

saddle

Spiral  
Saddle

r

i

r

r

© Weiskopf/Machiraju/Möller 62

Vector Field Topology

• Taylor expansion for the velocity field
around a critical point rc:

• Divide Jacobian into symmetric and anti-
symmetric parts
J = Js + Ja = ((J + JT) + (J - JT))/2  

Js = (J + JT)/2
Ja = (J - JT)/2

© Weiskopf/Machiraju/Möller 63

Vector Field Topology

• The symmetric part can be solved to give
real eigenvalues R and real eigenvectors

– Eigenvectors rs are an orthonormal set of
vectors

– Describes change of size along eigenvectors
– Describes flow into or out of region around

critical point

© Weiskopf/Machiraju/Möller 64

Vector Field Topology

• Anti-symmetric part

– Describes rotation of difference vector  
d = (r - rc)

– The anti-symmetric part can be solved to
give imaginary eigenvalues I

© Weiskopf/Machiraju/Möller 65

Vector Field Topology

• 2D structure: eigenvalues  
are (R1, R2) and (I1,I2)

Repelling node
R1, R2 > 0
I1,I2 = 0

Repelling focus
R1, R2 > 0
I1,I2 ≠ 0

Saddle point
R1 * R2 < 0
I1,I2 = 0

© Weiskopf/Machiraju/Möller 66

Vector Field Topology

• 2D structure: eigenvalues  
are (R1, R2) and (I1,I2)

Attracting node
R1, R2 < 0
I1,I2 = 0

Attracting focus
R1, R2 < 0
I1,I2 ≠ 0

Center
R1, R2 = 0
I1,I2 ≠ 0

© Weiskopf/Machiraju/Möller 67

Vector Field Topology

• Also in 3D
– Some examples

Attracting node
R1, R2 , R3 < 0
I1,I 2,I3 = 0

Center
R1, R2 = 0, R3 > 0
I1,I2 ≠ 0, ,I3 = 0

© Weiskopf/Machiraju/Möller 68

Vector Field Topology

• Mapping to graphical primitives:
streamlines
– Start streamlines close to critical points
– Initial direction along the eigenvectors

• End particle tracing at
– Other “real” critical points
– Interior boundaries: attachment or

detachment points
– Boundaries of the computational domain

© Weiskopf/Machiraju/Möller 69

Vector Field Topology
• How to find critical points

– Cell search (for cells which contain critical points):
• Mark vertices by (+,+), (–, –), (+, –) or (–,+), depending on

the signs of vx and vy

• Determine cells that have vertices where the sign changes
in both components –> these are the cells that contain
critical points

– How to find critical points within a (quad) cell ?
• Find the critical points by interpolation
• Determine the intersection of the  

isolines (c=0) of the two components,
• Two bilinear equations to be solved
• Critical points are the solutions within  

the cell boundaries

(+,+) (+,+) (+,+)

(–,–) (+,–) (+,–)

vx=0
vy=0

© Weiskopf/Machiraju/Möller 70

Vector Field Topology

• How to find critical points (cont.)
– How to find critical points within simplex?

• Based on barycentric interpolation
• Solve analytically

– Alternative method:
• Iterative approach based on 2D / 3D nested

intervals
• Recursive subdivision into 4 / 8 subregions if

critical point is contained in cell

© Weiskopf/Machiraju/Möller 71

Vector Field Topology

• Example of a topological graph of 2D
flow field

© Weiskopf/Machiraju/Möller 72

Vector Field Topology

• Further examples of topology-guided
streamline positioning

© Weiskopf/Machiraju/Möller 73

Vector Field Topology

• Saddle connectors in 3D

© Weiskopf/Machiraju/Möller 74

Vector Field Topology

• Saddle connectors in 3D

© Weiskopf/Machiraju/Möller 75

Vector Field Topology

• Summary:
– Draw only relevant streamlines (topological

skeleton)
– Partition domain in regions with similar flow

features
– Based on critical points
– Good for 2D stationary flows
– Unsteady flows?
– 3D?

© Weiskopf/Machiraju/Möller 76

3D Vector Fields

• Most algorithms can be applied to 2D
and 3D vector fields

• Main problem in 3D: effective mapping to
graphical primitives

• Main aspects:
– Occlusion
– Amount of (visual) data
– Depth perception

© Weiskopf/Machiraju/Möller 77

3D Vector Fields

• Approaches to occlusion issue:
– Sparse representations
– Animation
– Color differences to distinguish separate

objects
– Continuity

• Reduction of visual data:
– Sparse representations
– Clipping
– Importance of semi-transparency

© Weiskopf/Machiraju/Möller 78

3D Vector Fields

• Missing continuity

© Weiskopf/Machiraju/Möller 79

3D Vector Fields

• Color differences to identify connected
structures

© Weiskopf/Machiraju/Möller 80

3D Vector Fields

• Reduction of visual data
– 3D LIC

© Weiskopf/Machiraju/Möller 81

3D Vector Fields

• Reduction of visual data
– Clipping
– Masking

© Weiskopf/Machiraju/Möller 82

3D Vector Fields

• Reduction of visual data
– 3D importance function
– Feature extraction, often interactive

Vortex extraction  
with λ2

© Weiskopf/Machiraju/Möller 83

3D Vector Fields

• Improving spatial perception:
– Depth cues

• Perspective
• Occlusion
• Motion parallax
• Stereo disparity
• Color (atmospheric, fogging)

– Halos
– Orientation of structures by shading

(highlights)

© Weiskopf/Machiraju/Möller 84

3D Vector Fields

• No illumination

© Weiskopf/Machiraju/Möller 85

3D Vector Fields

• Phong  
illumination

© Weiskopf/Machiraju/Möller 86

3D Vector Fields

• Cool/warm

© Weiskopf/Machiraju/Möller 87

3D Vector Fields

• Illuminated streamlines

© Weiskopf/Machiraju/Möller 88

3D Vector Fields

• Halos

Without halos With halos

