

Variolite: Supporting Exploratory Programming
by Data Scientists

Mary Beth Kery
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA
mkery@cs.cmu.edu

Amber Horvath
 Oregon State University
Corvallis, Oregon, USA

horvatha@oregonstate.edu

Brad Myers
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA
bam@cs.cmu.edu

ABSTRACT
How do people ideate through code? Using semi-structured
interviews and a survey, we studied data scientists who
program, often with small scripts, to experiment with data.
These studies show that data scientists frequently code new
analysis ideas by building off of their code from a previous
idea. They often rely on informal versioning interactions
like copying code, keeping unused code, and commenting
out code to repurpose older analysis code while attempting
to keep those older analyses intact. Unlike conventional
version control, these informal practices allow for fast ver-
sioning of any size code snippet, and quick comparisons by
interchanging which versions are run. However, data scien-
tists must maintain a strong mental map of their code in
order to distinguish versions, leading to errors and confu-
sion. We explore the needs for improving version control
tools for exploratory tasks, and demonstrate a tool for
lightweight local versioning, called Variolite, which pro-
grammers found usable and desirable in a preliminary usa-
bility study.

Author Keywords
End-User Programming; Version Control Systems (VCS);
Exploratory Data Analysis; Variants; Variations

ACM Classification Keywords
D.2.3 Coding Tools and Techniques: Program editors;
D.2.7 Distribution, Maintenance, and Enhancement: Ver-
sion control.

INTRODUCTION
When programmers write code to design, discover, or ex-
plore ideas, there may be no clear requirements for that
code at the onset, and there may be a broad space of possi-
ble solutions [6][16]. For example, developing a new algo-
rithm for computational biology may take considerable

Figure 1. Variolite is a code editing tool that includes local
versioning of chunks of code. Here, there are two version

boxes. The outer one has three “Distance” versions, and the
inner one has two “dot” versions with “dot with norm”

currently being used.

trial-and-error on both the code and the concepts behind it
[35]. We call this process exploratory programming
[32][5], which we define as a programming task in which a
specific goal or a means to that goal must be discovered by
iteratively writing code for multiple ideas.

Data scientists are a group that does a lot of exploratory
programming. The term “data scientist” has a broad [29]
and sometimes contested definition [21] but here we use
“data scientist” in the simple sense of people who manipu-
late data to gain insights from it. We specifically target data
scientists who write code, which is a large group [29] en-
compassing people who work with data in domains such as
engineering, design, business, and research. One example
of when data scientists engage in exploratory programming
is “exploratory data analysis,” which is a common approach
to visualizing and asking questions of data, rather than more
straightforward hypothesis testing [12]. Another example is
working with data to develop machine learning models or
other intelligent systems, which is often a painstaking pro-
cess of experimenting with different manipulations, param-
eters, and algorithms [7][14].

A great deal of prior work on programming tools, such as
live programming tools and development environments like

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than ACM must be honored. Ab-
stracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org. CHI 2017,
May 06-11, 2017, Denver, CO, USA © 2017 ACM. ISBN 978-1-4503-
4655-9/17/05…$15.00 DOI: http://dx.doi.org/10.1145/3025453.3025626

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/3025453.3025626

R Studio, has focused on making it easier to quickly proto-
type ideas [25][24]. Other literate programming tools, such
as Knitr [30] or Jupyter notebooks [8] have become popular
in recent years for clearly communicating data analysis
code, rationale, and output. Yet there is little work on how
data scientists manage an abundance of exploratory code
over a longer-term project. How do data scientists transition
from one data manipulation idea to the next? To what de-
gree do they compare alternative ideas, or revisit older ide-
as?

Current tools have limited support for variations and ver-
sions of ideas. Live programming environments, whose
strength is instant feedback, tend to de-emphasize history,
which DeLine et al. remarked was an issue their users cared
about [25]. Tools like Jupyter notebooks have become im-
mensely popular for data science work [9], however the
focus of literate programming tools is to clearly communi-
cate analysis work, so that it can be shared with others and
replicated. We found that data scientists frequently try out
many less successful paths before cleaning up and condens-
ing their final result into code to publish or share. The line-
ar, narrative style of notebooks gives limited help with the
messy and nonlinear path to the final result.

Understanding how humans approach the exploratory pro-
cess of data science is crucial for improving the usability
and accuracy of this kind of work. Patel et al. [14] observed
that many difficulties in applying machine learning tech-
niques arose from the “iterative and exploratory process” of
using statistics as a software development tool. Patel’s in-
terviews with machine learning developers emphasized the
non-linear progression of this work where “an apparent
dead end for a project was overcome by revisiting an earli-
er point in their process” [14]. Others who have studied
data science and machine learning developers, such as Hill
[7] and Guo [22] have described difficulties even for ex-
perts, struggling to create understandable and reproducible
models during a process where they attempt many different
things. Both Hill and Patel called for advances in software
engineering methods and tools for dealing with this kind of
programming. Similar arguments have been made in the
scientific computing community, where problems of under-
standability and reproducibility during experimentation
with code are often mentioned [13][16][34]. Further, when
even experts struggle with an exploratory process, this low-
ers the accessibility to novices programming in these do-
mains.

To better understand the barriers and opportunities in this
area, we conducted semi-structured interviews with 10 data
scientists, and then a survey of an additional 60 data scien-
tists, specifically focused on how ideation is carried out at
the concrete level of artifacts like source code and files. In
summary, we found that data scientists frequently write
code for new analysis ideas by repurposing or building off
of their code from a previous idea. Due to the sometimes
non-linear progression of their exploratory work, partici-

pants emphasized reusing code, copying code and keeping
code that was sometimes long dead, just in case it became
useful later. To facilitate reusing code that overlapped with
older analyses while attempting to keep those older anal-
yses intact, many relied on ad-hoc means to version their
code. These informal versioning practices took the form of
copying files, copying snippets, and comments (sometimes
with intricate combinations of code commented on and off).

While these code versioning needs seem like they could use
standard software version control systems (VCSs) like Git
or SVN, we note: 1) a low usage of VCSs even by partici-
pants who actively used one for other kinds of work, and 2)
benefits in informal versioning interactions that a conven-
tional VCS does not provide. For example, copying and
commenting out code allows for rapid branching and com-
parison between multiple versions of a single line of code,
or any size code of interest, without leaving the code editor.
Informal versioning is more transparent than versions of
code hidden behind a conventional command line tool,
since in that case programmers cannot quickly view and
swap among multiple versions of code. However, partici-
pants also reported consistent difficulties that arose from
informal versioning practices.

We found these ad-hoc interactions are practices individu-
als had developed for themselves over time and experience.
Yet there was considerable overlap in the practices partici-
pants reported. Commenting, copying, and keeping code are
natural affordances of text programs, and require no new
tools. Our studies showed that many people leverage these
mechanisms for a variety of purposes, like versioning. By
developing a stronger understanding of the workarounds
programmers use, we aim to explore what versioning capa-
bilities data scientists need for managing their ideas in a
non-linear exploratory process. Through design, we aim to
leverage the local interactions that programmers naturally
use during exploratory programming, such as versioning
arbitrarily sized sections of code.

Our new tool, called Variolite 1(see Figure 1) is an initial
probe to test some of these interaction ideas. Variolite,
which is a kind of rock structure, here stands for Variations
Augment Real Iterative Outcomes Letting Information
Transcend Exploration. Variolite is built on top of the At-
om editor [1], and allows users to directly version code in
their editor simply by drawing a box around a section of
code and invoking a command. It is a general purpose, pro-
gramming-language agnostic, versioning tool. We per-
formed an initial usability study that showed that it is usa-
ble.

Our work makes contributions in two areas:

• Our qualitative study showing barriers and re-
quirements of data scientists managing exploratory
code.

1 Variolite source code https://mkery.github.io/Variolite/

• A working prototype of a tool to address some of
these versioning interaction issues, and a usability
study showing its usability.

RELATED WORK

Programming for data analysis or machine learning
Guo previously studied people who program to gain in-
sights from data, whom he called “research programmers”
[22]. He noted problems managing a large amount of files
produced during exploratory work with data. He also noted
a “lack of transparency” in traditional versioning tools, in
contrast to the “low-tech” interaction of copying a file and
giving it a derivative name (like “file-2”). We expand upon
this work by studying a wider range of informal versioning
interactions through interviews and through looking at in-
terviewees’ project artifacts.

Guo et al. [23] also produced a research system called Bur-
rito, which displays a GUI activity feed of things like out-
puts, save events, and notes relevant to a given project.
While both Burrito and Variolite record history and output
provenance information, the Burrito tool collects much
more detailed provenance information by working at the
operating system level in Linux. Variolite is much more
lightweight and is situated in the code editor, but as a trade-
off, collects a much simpler link between code and output.
Burrito is also intended as a lab notebook approach, like
literate programming tools such as Jupyter notebooks [8].
While Variolite certainly could work with added Markdown
and other literate programming techniques, our focus in this
research is managing ideas during non-linear exploration.

Both Hill et al. [7] and Patel [15] reported that machine
learning programmers struggled to reproduce or understand
earlier experiments. Patel found that logging experiments
was beneficial to return to earlier result, but difficult and
time consuming. Patel created a research tool Hindsight,
which keeps a history of different parameters used in a pro-
gramming task for machine learning classification. Hind-
sight also allows users to combine different alternatives of
steps in the classification, such as which data is loaded and
which algorithm is used. Hindsight is a GUI based tool spe-
cific to classification. Variolite aims to generalize interac-
tions for dealing with alternatives and history to work in a
wider range of exploratory tasks.

Dealing with alternatives
Several other research tools have explored interactions for
alternatives of code, and also versions of code over time.

Juxtapose [6] is a research tool that provided interaction
designers with different alternatives of their code, in order
to compare between different parameters of the look and
feel of their interface designs. This tool used Linked Edit-
ing, a technique for editing two alternative pieces of code
simultaneously, previously developed by Toomim et al.
[18]. Juxtapose also built off of prior work such as Set
Based Interactions [17] and Subjunctive Interfaces [4],
which explored general techniques for exploring multiple

alternatives in parallel. These were not specific to writing
programs.

On the side of professional software engineering, software
product lines are a method used in industry to adapt one
piece of software to be customizable for different clients or
devices [20]. Software product line research aims to handle
much more complex versions and interdependencies than
Variolite, with commensurate complexities in the develop-
er’s interface.

Interacting with history
Azurite [33] developed an interaction for selectively undo-
ing past actions in code using a timeline visualization. Oth-
er interactions for versioning have been developed for End-
user Programmers, such as for Mashups [27]. None of these
focused on helping users edit fine grain versions.

METHODOLOGY
Before we approached the design of a tool, we wanted to
understand the real needs and barriers faced by data scien-
tists, so we performed two formative studies.

Interview Study
We conducted a series of semi-structured interviews with
researchers across multiple universities. Researchers were a
convenience sample of our target population: people who
do significant exploratory work with data. We recruited
individuals who had worked on at least one major explora-
tory analysis project. Our 10 respondents were a mix of
faculty, and graduate and undergraduate student research-
ers. Eight of interviewees did research in a computer sci-
ence-related field, one in computational chemistry, and one
in computational neuroscience. The gender ratio was 2 fe-
males to 8 males. Interviewees worked with a variety of
programming languages, with Python and R being the most
used. We intentionally oversampled people who were expe-
rienced programmers with computer science training in
order to better understand the intent of their practices not
simply arising from lack of awareness of available tools or
lack of skill with software development. Prior work has
shown that many scientists are unaware of good software
development practices [16].

All participants first signed a consent form. There was no
monetary compensation for participation in the study, and
participants volunteered their time for a 45-60 minute inter-
view. In the first part of the interview, we asked participants
to describe a recent exploratory project at a high level:
What were their goals in the project? What high-level steps
did they follow to meet those goals? All interviewees dis-
cussed projects that had spanned at least several weeks of
work. Due to the timespan of significant projects, we chose
a retrospective interview methodology rather that direct
observation of their work [10]. Next, we asked participants,
whenever possible, to show us artifacts from the project,
including source code, their folder structure, and data files.
During this stage we asked participants to discuss how their
high-level ideas had been implemented in code and files.

Each interview was audio recorded and transcribed. Several
participants gave us permission to keep and share screen-
shots of their code and files, and these artifacts were used in
our analysis. As the interviews were focused on each partic-
ipant’s research, there were large parts of the transcriptions
about an interviewee’s general research topic, rather than
their work process. To analyze the interviews, two coders
first read all interviews and pulled out any quotes related to
process, such as plans, code, notes, collaborators, etc. Fol-
lowing an affinity diagramming approach, coders grouped
the quotes into higher-level themes, and separated out any
quotes that explicitly mentioned a difficulty or complaint.

Survey
We next sought to validate our observations from the inter-
views on a broader population. Using an online survey, we
recruited respondents from several websites for data scien-
tists (e.g., kaggle.com and reddit.com groups for machine
learning or data science), as well as emails to acquaintanc-
es. A total of 77 people started the survey. However, not all
participants answered all of the questions, so here we ana-
lyze only the 60 people who answered the questions beyond
the demographic information. All 60 self-identified as hav-
ing experience coding with data in an exploratory way. The
average age of participants was 34 (SD = 13), and the gen-
der ratio was 21% females, 74% males. The remaining 5%
of participants chose not to disclose their gender.

We structured our survey such that it acted as a quantitative
supplement to our interview. Using the interview results,
we drafted questions that built upon what issues affected
participants most, what design features in a tool they would
want to address these concerns, and to see if our findings
generalize across a more diverse sample. First, we asked
questions to determine the background of our participants,
summarized in Figure 2. We then asked questions about
coding practices and behaviors. We presented statements
such as “I analyze a lot of different questions about the data
in a single source file” with a 5-point Likert scale, going
from “Never” to “Very Often”. We then asked about the
problems they encounter, such as “Distinguishing between
similarly named versions of code files or output files” with
a 5-point Likert scale going from “Not at all a problem” to
“A very big problem”. We also gave a “don’t know / can’t

answer” option in case participants had never encountered
or could not recall encountering such an issue.

RESULTS AND DISCUSSION
Interview and survey participants varied widely in their
practices, and the kinds of projects they worked on. Despite
this, many participants had behaviors and beliefs in com-
mon. In the following, participants in the interviews are
identified with a “P”, and survey responses with percent-
ages for the different answers.

Exploratory Process
The participants mentioned a variety of ways that their pro-
gramming tasks were exploratory. One of the most salient
feelings expressed by participants was the trial-and-error
nature of their work, and the risk of investing in an idea that
may fail or be discarded:

“I didn't always have a great idea of what would work up
front, so I would try a lot of different things and then they
wouldn't pan out and then you would disregard most of that
work, but maybe still want some of the small processing
steps from that work, if that makes sense, to apply to your
next statistical model.” - P10

Of survey respondents, 43% “Agreed” on a Likert scale that
they “prioritize finding a solution over writing high-quality
code”, while another 33% “Strongly Agreed” (totaling
76%). Although some interviewees were distinctly more
messy or meticulous as evidenced by their code artifacts, all
mentioned avoiding investment in some way, whether
avoiding leaving informational comments in their code, or
avoiding taking notes or not using extra software tools be-
yond the bare minimum needed for their analysis.

“I know how to write code. And I know that I could write
functions to reuse functions and I could try to modularize
things better, and sometimes I just don't care because why
am I going to put effort in that if I'm not going to use it
again?” - P6

This sentiment is common to how end-user developers pri-
oritize goals [3]. While “end-user developer” often refers to
a programmer without formal training in computer science,
many of our participants did have formal training (Figure
2). Ko et al. distinguish end-user developers as having goals
where a program is a means to an end, rather than profes-
sional developers, whose goals are the code itself as a prod-
uct [3]. Under this definition, considering data scientists as
end-user developers may be fruitful for leveraging existing
theories on programmers who write expendable code.

Yet such “throw away” data analysis attempts are often not
really thrown away. While all interviewees discussed ac-
cumulated failed attempts and earlier analyses that were
less informative, they also often talked about reusing that
code. Interviewees mentioned they often built off code from
an earlier attempt in order to try a new method. This is sup-
ported by the survey, where 46% of survey participants
reported reusing code from the same project at least “Of-

Figure 2. Background statistics about 59 of the survey re-

spondents. Most had graduate degrees in computer science
and work in research (one respondent declined to answer).

ten”. Similarly, 47% reported reusing code snippets taken
from different projects at least “Often”.

Informal Versioning
Data scientists we interviewed and surveyed faced chal-
lenges of trying out multiple alternatives in their code,
while trying to judge which code to keep in case that analy-
sis or helper method would be useful again later. Explora-
tion can involve non-linear iteration, so keeping code to
backtrack to or to reuse was important to interviewees. 4 of
10 participants discussed actively keeping around old code
they were no longer using, just in case some part of that
code proved helpful later on. Similarly, 65% of survey re-
spondents reported leaving code snippets they were not
currently using in the code at least “Occasionally”, and 79%
reported commenting out code at least “Often”.

Interviewees were cautious about deleting code. Yet this
introduced code complexity, as some attempts could not
simultaneously exist in the same namespace, or used over-
lapping code. As quick workarounds, data scientists relied
on informal versioning such as commenting:

“I guess this is kind of my own personal version of version
control. A lot of times I'll like comment out a whole big sec-
tion that was there, and then I'll rewrite it so that it's differ-
ent but I'll keep the original one exactly as is in case the
new version kind of sucks.” - P9

Code that is commented out does not run. Using comments
to store code has been observed in prior studies [6][31]. Ko
et al. [2], when studying experienced programmers, found
that 60% of edits using comments were for temporarily
commenting code during maintenance tasks.

Comments to keep track of attempts
44% of survey takers reported using comments to keep
track of what they have tried, and 70% keep commented
code to reuse later. This allowed data scientists to keep
multiple versions of an idea for reference, with only the
relevant one running.

Comments to manipulate execution
Comments were used not only to store chunks of code, but
also to mutate the meaning of existing code, sometimes in
complex ways. In the survey, 56% of the respondents re-
ported using comments explicitly to control execution.

P3’s code, shown in Figure 3, shows an example of this, in
which several alternatives for outputting the analysis result
are present in the comments. An active chunk of Python
code graphs the output, but this code has several comment-
ed-out statements. There is a second graphing section of
code lower down that is fully commented out.

Duplicating snippets, function and files
Copying code was another popular way of versioning.
Shown in Figure 4 is P1’s file structure, where many ver-
sions of the same script were kept to track major attempts at
improving a machine learning model. On average, 72% of
the respondents in the survey said they at least “Occasional-

ly” do this, and 58% at least “Often” said they named the
new file copies based on the original one. Survey respond-
ents reported making an average of 3-4 versions based on
one file. Interviewees also demonstrated multiple versions
and copies of functions and smaller code snippets.

Figure 3. Comments used to keep alternatives

Difficulties
As interviewees did not overly invest in notes, comments,
or trying to write clear code more than they felt necessary,
they had to rely on their mental map of their code to under-
stand it. Here are some difficulties that interviewees men-
tioned, and responses from the survey that show that these
issues are indeed widespread:

Why did I name my file that? Participants discussed having
files or methods with ambiguous names or that they often
had multiple files with similar names, making it difficult to
distinguish between versions (see Figure 4). 7 out of 10
participants expressed confusion when talking about the
names they chose for different methods and files. 83% of
survey takers reported that closely named artifacts had
caused them at least minor problems in their work.

How do I keep track of everything in my project? Partici-
pants struggled to keep track of the relationships between
files (source code, input data, output data), code snippets,
and their analysis progress. 5 out of 10 participants ex-
pressed having difficulty in keeping track of the high-level
aspects of a project and how it related to the lower-level
code. Furthermore, as their code evolved, the code that
originally produced a particular result may be changed or
obfuscated. 4 out of 10 reported losing track of their mental
map of code, especially if the code was messier or had parts
commented out. Interviewees discussed understanding their
code in the short term, but having trouble understanding the
code when they returned to it later. 85% of survey takers

reported that this caused them at least minor problems in
their work, with 44% reporting significant problems.

What was I doing in this old project? Participants wanted to
go back to old projects to lift code, but had difficulty re-
membering and understanding the structure and details of
these old projects. 5 out of 10 participants expressed diffi-
culty reorienting themselves with older projects. 67% of
survey takers reported that visiting old projects was a sig-
nificant problem.

What do I do with all this old code? Participants expressed
an interest in “hoarding” code through commenting out
code snippets and refusing to delete old source code files in
case their exploration did not pay off. However, this lead to
confusion with keeping track of multiple similar copies as
well as commented versus not-commented code.

This file is huge! What’s in it? Participants often had large
script files that served a variety of purposes, resulting in
confusing code dependencies and relationships among vari-
ous parts of the script. This resulted in an overall difficulty
discerning the purpose of a script, which 4 of the 10 partici-
pants mentioned. Some reported the problem extending
across multiple files, where cluttered directories were com-
posed of confusing relationships between files.

These alternatives are inconsistent! P1 faced problems in
which she fixed a bug in one alternative of her code, and
then when she needed to backtrack to an earlier alternative,
she had lost track of which alternatives had the bug fix, and
which did not. 74% of survey takers reported that incon-
sistent alternatives had caused them at least minor prob-
lems, with 35% reporting that this was a significant prob-
lem.

Why aren’t people using version control systems?
Data scientists face difficulties with informal versioning for
multiple overlapping ideas over time. This might seem to be
well within the realm of problems that software version
control systems are designed to solve. VCSs reduce code
clutter by separating out versions. They give order to ver-
sions and preserve history, so that older versions and anal-
yses can be reproduced in the future.

However, only 3 out of 10 of interviewees chose to use
software version control for their exploratory analysis work,
although 9 of 10 did actively use VCSs such as Git or SVN
for other non-exploratory projects they worked on. A bene-
fit of over-sampling from individuals with computer sci-
ence background in the interview study is that this provides
a more nuanced picture than previous work, which has stud-
ied version control usage by scientists who lack training in
computer science [16]. Nguyen-Hoan et al., in a survey of
scientists, found that 30% of their sample used VCS [16].
Despite our over sampling of people with CS backgrounds
in our survey (see Figure 2), we found that 48% of partici-
pants, just under a half, did not use version control for their
exploratory data analysis work.

A few survey takers did not know how to use software ver-
sion control, but the most common reasons for not using a
VCS were 1) it was too heavy-weight for what they needed,
2) they were not concerned about code collaboration, and 3)
they were not concerned about reverting code. This final
reason “No need to revert code” was cited by interviewees
as well, and appears contradictory to their demonstrated
interest in hoarding old code for later reuse. In fact, some
interviewees, when pressed to explain, reasoned that be-
cause their code was copied and commented in many plac-
es, there was no need to “backtrack” or “revert” in the sense
that all old code they needed was present in one of their
code files.

“I guess because I’m doing like this copy and pasting thing,
I also have lots of old versions of stuff everywhere, like oth-
er projects and things like that” - P5

It is clear that many data scientists do not perceive VCS as
having enough benefit over their current practices to invest
effort in using these tools. Furthermore, while using infor-
mal versioning can be problematic, we argue there is func-
tionality of these interactions that conventional VCS does
not gracefully support:

• Versions are easily accessible and comparable because
they are all available in the user’s immediate files.

• It is easy to see what code you have available to reuse.
• There is a smaller learning curve, since this should not

be much more complicated than the commands it takes
to comment or copy something.

• It is easy to temporarily create a version of the code,
and then remove the version if not wanted later.

• It is easy to keep alternatives of an arbitrary size.
While conventional version control operates only at the
file level, programmers make use of commenting and
copying to version at the level of functions, code snip-
pets, lines, or even single values.

In order to make exploratory programming less prone to
confusion, we aim to inform new interactions for software
version control tools based on how data scientists naturally
use versioning.

Figure 4. Folder from a data analysis project of P1

DESIGNING TO SUPPORT LOCAL VERSIONING
To explore this design space, we first sketched a number of
possibilities for interacting with versioning within a code
editor. We showed these to a convenience sample of 6 data
scientists. Between each informal 15-30 minute session we
iterated on the drawings based on the open-ended feedback
we received.

Based on this feedback, we iteratively designed and imple-
mented a prototype tool called Variolite. Variolite is im-
plemented in CoffeeScript and CSS, using the Atom edi-
tor’s package framework [1]. Atom is an open-source code
editor developed by GitHub, first released in 2015. It has
over 1 million active users, and is close in style to other
more mature editors such as Sublime Text, which are popu-
lar among Python programmers. Although Variolite can be
used with any programming language or plain text, here we
show examples in Python, as it is a popular language for
data science tasks.

Users of Variolite draw “variant boxes” around regions of
code, where the code within the box can then be locally
versioned or branched (Figure 5). As with commenting,
where a user can use the comment symbol as a switch to
control execution, users can control which version is run by
a simple switch of the active tab on the variant box. This is
similar to the tab-based versioning shown in Juxtapose [6].
However, whereas Juxtapose shows alternatives of a file in
the code editor, we extend this interaction to encompass any
amount of code. A user can draw a variant box to create

alternatives of a file, a group of functions, or a single line of
code. Multiple variant boxes can exist in a file and they can
be nested (Figure 7 b,c). Variant boxes can be created or
dissolved back into flat code as needed.

Variolite Use Case
Interviewee P1 was working on developing a machine
learning model. To do this, she created many different cop-
ies of her Python scripts in order to keep a record of all the
variations of the code while trying to achieve the highest
predictive accuracy for her model. She also developed an
elaborate menu system in her main script, to experiment
with different combinations of aspects like algorithms, fea-
tures, and which features were used in the model.

To illustrate the range of functionality of Variolite, we will
describe a fictional use case, based on how P1 might use it.
The name “Ellen” and domain in the scenario are fictional:

Drawing a box, version it
Ellen is calculating a new feature for her model. She has a
function matchString() and is trying to figure out how to
best measure similarity between two pieces of text. She
wants to try a new method for doing this. Using Variolite,
she selects the code of matchString() with the cursor and
selects the command “Wrap in Variant” from the right click
menu (Figure 5a). This draws a variant box around match-
String() (Figure 5b). Now Ellen uses the “new branch”
menu item to create a new version of matchString() (Figure
5c), which she titles “fuzzy match”. She edits this new ver-
sion to implement the new algorithm. She can now switch
between the two algorithms of matchString() by changing
the active tab in the header of the variant box (Figure 5d).
Whichever version is showing is the one that is run.

Supporting nonlinear exploration
Like informal versioning, our intention for Variolite is to
provide a simple structure that is sufficiently flexible so
programmers can leverage versioning in whatever way they
need during their exploratory process. As Ellen works, she
can vary different aspects of her code. She puts a variant
around a single line that changes which machine learning
algorithm she is using. She puts variants around different
functions that generate features and that control which fea-
tures are included in the model. Now, by simply interchang-
ing which versions of each of those alternatives are run, she
can explore different combinations of the different things
she has tried. Instead of a purely linear iteration, she can re-
try features she used in the past with new versions of the
algorithms’ parameters. This allows Ellen to more easily
explore a problem that can be improved on multiple interre-
lated dimensions.

Running code
Switching version tabs does introduce a danger of runtime
errors if surrounding code that a version was written in has
since changed. In future work, this limitation may be ad-
dressed using lightweight program analysis, e.g. by at least
alerting users to parts of the code that are likely to produce
errors.

Figure 5. Creating a variant box in Variolite. In (a) the user se-
lects a section of code and selects the command “wrap in vari-

ant”. In (b) this places a box around the code, which can be used
to keep multiple versions of that chunk of code (c, d).

As Ellen works, she can run her program using the run but-
ton at the top (Figure 7a), or a terminal area on the right
pane of Variolite (Figure 7e). This will run the entire file at
its current state. As with a typical terminal, Variolite dis-
plays the command used and output from each run in its
terminal pane. By simulating ways to run code within Vari-
olite’s interface, we are able to add layers of interaction for
dealing with runs. Exploration with data involves not just
the code artifact, but also the data and parameters used to
produce a certain result. Therefore, each time the code is
run, a wrapper script in Variolite records the parameters
used, and all inputs/outputs from the run. This provenance
data is saved in JSON format separately from the code.
However, keeping all outputs can be impractical for space
when the output is very large. To mitigate this, users have
the option of saving whole data files or simply pointers to
those files. Saving only pointers is a trade-off in that Vario-
lite cannot provide accurate provenance information if
those data files have changed.

To allow users to revisit past experiments, a commit is also
automatically recorded of the entire source code file each
time the file is run, as well as a commit for each variant box
used in the run. Suppose Ellen would like to review an ear-
lier experiment. She can find the experiment’s result in the
output pane, or use the search pane to find it if it is out of
view (Figure 7d). To help users find interesting results
among many runs, a user can provide annotations and tags
on versions that are promising, either in the variant box, or
in the output panel at the right (Figure 7f).

Double-clicking a given output causes Variolite to set the
entire code back to the past version of the file and the past
version of each variant box that produced that result. If a
new variant box was created later in time after that output,
it will not appear in the past. While viewing an earlier
commit, Ellen cannot edit the code, but she can re-run it,
copy it, or create a new branch from that point in time. Var-
iolite keeps past commits as immutable to preserve the out-
put history. If Ellen creates a branch from a past commit,
however, she can continue editing from that point.

If Ellen wishes to backtrack a single variant box to an earli-
er state, she can also navigate its commit data by clicking
the clock icon (Figure 6). This activates a timeline slider,
where (similar to video editing software) a user can scroll
the slider back to view the code at different commits. The
user can use this form of time travel both at the file level
and with individual variant boxes.

Figure 6. Navigating to a past commit. The orange color of the

variant box indicates that the code is showing a past state.

Automatic commits also serve as a safeguard for backtrack-
ing. In the earlier example, suppose Ellen decides to keep

only the one string-matching algorithm as the best solution.
She presses the button “Dissolve Variant” from the box
header, which dissolves the variant box around match-
String() and returns her code to flat text. However, the vari-
ant and the other versions of matchString() are not really
gone, since they can be retrieved using undo in the short
term. Ellen can also use the commit history of the code to
retrieve old versions of matchString() even months later,
since that variant box will still exist in earlier commits of
the file. This reflects the finding that people do not always
know in advance what they will find useful [32].

Modeling alternatives and history
In the same sense as with a normal VCS, creating a new tab
in a variant box creates a new branch of the code in that
box. In a VCS, a commit is a copy of source code taken at a
certain point in time, and a series of commits are a way to
track the history of the software’s development. A branch
allows for multiple concurrent copies of the software’s
code. In Variolite, each variant box has its own revision tree
of commits and branches, like a typical VCS. However,
rather than a single revision tree existing for the entire code
file, Variolite models the file as one revision tree that points
to child revision trees for each variant box in the code. Var-
iolite keeps a revision history for the file, and then links this
revision tree to child trees of any variant boxes that are cre-
ated in the code. Shown as a white header bar at the top of
the file (Figure 7a), this top-level variant box wraps the
entire file and also acts as a general menu for Variolite,
where the user can run the code.

We provide this approach to branches and commits in order
to minimize the upfront investment users must take to think
about their code’s history. In a simple use case, similar to
Juxtapose [6], the user does not have to think about version-
ing more than switching between tabs. However in Vario-
lite we consider that data scientists may work on code over
the span of weeks or months. Thus to support long term
versioning needs, the full capabilities of a detailed revision
tree are available to users if they need it. This is in line with
the “low-floor, high-ceiling” principle proposed for creativ-
ity support tools [19]. Currently in the prototype of Vario-
lite, all revision data is kept in JSON files separately from
the code. This is brittle to external edits, a common round-
trip engineering problem. In future work, Variolite can
compare between the last recorded version of the file and
the one opened by the user, and interact with the user to
resolve ambiguities over where to place variant boxes if the
annotations are broken. In future work, we will investigate
storing the revisions in a way that is consistent with Git.

MANAGING MANY VERSIONS
A chief design concern in creating an automated alternative
for informal versioning practices is simply “moving the
problem” instead of addressing the difficulties data scien-
tists have with informal versioning. However, unlike infor-
mal practices, as programmers scale up the number and

complexity of versions they choose to keep, we can use
design interventions in a tool to help with these issues.

Code readability
Variolite can improve code readability by reducing the
number of loose copies and commented-out sections of
code. Yet a design trade-off of situating versioning in the
editor is that the GUI components of Variolite must not
obstruct code readability. This problem may be amplified
when the user has multiple variants throughout their file.
We address this problem by styling variants as much as
possible like in-line comments. As shown in Figure 7 b and
c, variant boxes display a header bar with different controls
when the user’s cursor is placed within the box. When the
cursor is outside, the box is displayed as a line in the same
style as a code comment.

Second, the tab layout at the header of a variant box is not
manageable to switch among more than 3 to 4 different
branches because of the limited space. Still, 3 or 4 branches
may be reasonable much of the time, as three is the average
number of file-copied versions that survey participants re-
ported making. Limiting the space is another design
tradeoff for readability. A list of 10 to 20 branches in a var-
iant box may look overwhelming. As a compromise, in
Variolite the user can access a larger revision tree showing
all the branches of that box (Figure 8), such that they can
control which 3 or 4 branches are actively showing.

Distinguishing versions
Although in Variolite, users can name different versions,
our study of data scientists suggests that this is not always

done, and even if so, they might use similar names which
can be hard to distinguish. Furthermore, Variolite cannot
force users to pick names that are logical or easy to distin-
guish. Thus, to address the problem of distinguishing ver-
sions, we use metadata to provide users with a variety of
different context clues. This decision is informed by prior
work by Srinivasa et al. [28] who used an information for-
aging theory approach to study how programmers distin-
guish between similar versions. Distinguishing versions can
be a difficult task, and participants in that study leveraged a
variety of code cues such as file name, output, data, and
code features.

Figure 8. Navigating branches

Some metadata is similar to what is provided by a VCS. For
example, a user can name each branch. Each commit and
each branch shows a date when it was last edited. Each var-
iant box can show a revision graph, so the user can see the
order and relationships among branches. Variolite also
gives additional cues:

• The ability to tag any branch or commit with a custom
tag, for example “Paper version”, “Nice graph!”, or
something task-specific like “Crows distance” (Figure
7f).

Figure 7. Variolite with labels for different features. (a) the top level variant box that wraps the entire file and also acts as the
tool menu. (b and c) two different variant boxes, one nested within the other. (d) a search bar for finding outputs and versions.

(e) the output pane and (f) where the user has given an output and its commit a custom tag.

• A snapshot of the latest output for each branch and
each commit. Currently, the captured input/output is
only from the console, but capturing pictures, like dis-
played charts and graphs, are planned as future work.

• The ability to search in past outputs, branches, and
commits and not just in the current file (Figure 7d).

Although cues may help, the complexity of interacting with
local versions may be a general limitation of a local ver-
sioning tool. Variolite may be convenient with smaller
scripts that data scientists often use. However we cannot yet
claim that it scales to large projects. However, we argue
that informal versioning techniques like copy-
ing/commenting also do not scale well to large projects.
Local versioning is close to Software Product Lines used in
industry to mark multiple configurations of code within a
code file. These are known for their complexity [20]. The
focus of Variolite is using interaction techniques and ex-
ploring designs to mitigate this complexity, but having files
with variability is a known usability challenge, which we
will continue to research.

PRELIMINARY USABILITY STUDY
Our goal at this stage of the design was to create a reasona-
ble alternative for informal versioning interactions, such
that in tool form, issues around informal versioning become
more tractable to design interventions. Thus, we conducted
a pilot usability study. To test the underlying variant box
interaction, we limited the Variolite prototype to only vari-
ant boxes with tabs (Figure 7b). The additional features
reported above were added afterwards using feedback from
the usability pilot.

We recruited 10 participants, a mixture of undergraduate
and graduate students (7 male, 3 female). Participants had
on average 5 years of programming experience and 1.5
years of experience with data analysis. The pilot study was
conducted in our lab, using a designated MacBook comput-
er. After signing a consent form, each participant was given
a brief tutorial on Variolite, showing how to wrap code in a
variant box and create a new version. Next, participants
were given an Excel file dataset and a set of “exploratory
questions” to answer about the data using the tool and a
Python script. We gave participants fixed questions, instead
of allowing them freely explore the data, because this al-
lowed us to focus their work on questions that built off of
previous questions and required some versioning. After the
coding task, each participant filled out an online question-
naire to give feedback on the tool, and was compensated
$20 for their time.

9 of 10 participants were able to successfully wrap code in
variant boxes, create new versions, and switch between
versions during the coding task. The one participant who
struggled with the tool became confused when instead of
manually selecting all the code in a function, she only se-
lected the function name before using the command “wrap
in variant”. She expected the tool to then wrap the entire
function in a variant, but instead it only wrapped that single

line. By adding language-specific static analysis checks to
Variolite, a future iteration of the tool may include scoping
rules such that if the user wraps the line def foo(): in
Python, this would appropriately wrap the whole function.

As recommendations for new features, the participants re-
quested better ways to distinguish different versions. Sever-
al mentioned the ability to name their versions was a very
useful feature, but more automatic techniques were request-
ed. This motivated some of the features we added to Vario-
lite described above, including ways to navigate and search
the branches and commits, and cues such as tags. One par-
ticipant was concerned with becoming overwhelmed with
too many versions of a part of the code, which motivated
the branch view (Figure 8).

Overall, 9/10 participants reported on the questionnaire that
they liked the tool and found it easy to use. All 10 wrote
that they would consider using it in real life, and one partic-
ipant even emailed us after the study asking when the tool
would be released to use.

FUTURE WORK
While we have determined the basic usability of key fea-
tures of Variolite, a next step is to evaluate the usefulness of
all of these interventions together. To do this, we are pre-
paring the tool for longer-term usage by data scientists. A
study over days or weeks will allow us to explore how data
scientists use versioning, as well as how Variolite’s interac-
tions scale and work over time.

CONCLUSIONS
Data scientists must manage complex ideas over time dur-
ing exploratory programming work. Exploration is iterative
and sometimes non-linear. Data scientists often resort to
informal methods of versioning, such as commenting out
code, in order to keep around old attempts to return to or
compare. These informal versioning methods are wide-
spread, and cause difficulties and confusion when the pro-
grammer cannot keep a strong mental map of their code.
Variolite shows that new interactions for version control
can begin to address these difficulties. Creative exploration
is key to many kinds of work, as is managing a variety of
ideas. By closely studying people’s workarounds and how
people want to use versioning, we can design usable inter-
faces for software versioning tools for a wider variety of
people and a wider variety of tasks. Variolite’s lightweight
local versioning ideas may also be useful for other creative
editing tools, such as text or image editing.

ACKNOWLEDGEMENTS
This research was funded in part by the NSF under grants
IIS-1314356, IIS-1644604 and CCF-1560137. Any opin-
ions, findings and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect those of the US Government. In addition,
we would like to thank Kenneth Holstein and all our partic-
ipants.

REFERENCES

1. Atom Editor, https://atom.io/

2. Andrew J Ko, Htet Htet Aung, and Brad A Myers.
2005. Design requirements for more flexible struc-
tured editors from a study of programmers’ text
editing. In CHI’05 extended abstracts on human
factors in computing systems. ACM, 1557–1560.

3. Andrew J Ko, Robin Abraham, Laura Beckwith,
Alan Blackwell, Margaret Burnett, Martin Erwig,
Chris Scaffidi, Joseph Lawrance, Henry Lieber-
man, Brad Myers, and others. 2011. The state of
the art in end-user software engineering. ACM
Computing Surveys (CSUR) 43, 3 (2011), 21.

4. Aran Lunzer and Kasper Hornbæk. 2008. Subjunc-
tive interfaces: Extending applications to support
parallel setup, viewing and control of alternative
scenarios. ACM Transactions on Computer-
Human Interaction (TOCHI) 14, 4 (2008), 17.

5. Beau Sheil. 1983. Environments for exploratory
programming. Datamation 29, 7 (1983), 131–144.

6. Björn Hartmann, Loren Yu, Abel Allison,
Yeonsoo Yang, and Scott R Klemmer. 2008. De-
sign as exploration: creating interface alternatives
through parallel authoring and runtime tuning. In
Proceedings of the 21st annual ACM symposium
on User interface software and technology. ACM,
91–100.

7. Charles Hill, Rachel Bellamy, Thomas Erickson,
and Margaret Burnett. 2016. Trials and Tribula-
tions of Developers of Intelligent Systems: A Field
Study. In 2016 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing
(VL/HCC). IEEE, 162–170.

8. Fernando Pérez and Brian E Granger. 2007. IPy-
thon: a system for interactive scientific computing.
Computing in Science & Engineering 9, 3 (2007),
21–29.

9. Helen Shen and others. 2014. Interactive note-
books: Sharing the code. Nature 515, 7525 (2014),
151–152.

10. Hugh Beyer and Karen Holtzblatt. 1997. Contex-
tual design: defining customer-centered systems .
Elsevier.

11. John M Carroll and Mary Beth Rosson. 1987.
Paradox of the active user. The MIT Press.

12. John W Tukey. 1977. Exploratory data analysis
(1st, ed.). Pearson, New York, NY.

13. Judith Segal. 2007. Some problems of professional
end user developers. In IEEE Symposium on Vis-
ual Languages and Human-Centric Computing
(VL/HCC 2007). IEEE, 111–118.

14. Kayur Patel, James Fogarty, James A Landay, and
Beverly Harrison. 2008. Investigating statistical
machine learning as a tool for software develop-
ment. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems. ACM,
667–676.

15. Kayur Dushyant Patel. 2013. Lowering the Barrier
to Applying Machine Learning. Ph.D. Dissertation.

16. Luke Nguyen-Hoan, Shayne Flint, and Ramesh
Sankaranarayana. 2010. A survey of scientific soft-
ware development. In Proceedings of the 2010
ACM-IEEE International Symposium on Empiri-
cal Software Engineering and Measurement.
ACM, 12.

17. Michael Terry, Elizabeth D Mynatt, Kumiyo
Nakakoji, and Yasuhiro Yamamoto. 2004. Varia-
tion in element and action: supporting simultane-
ous development of alternative solutions. In Pro-
ceedings of the SIGCHI conference on Human
factors in computing systems. ACM, 711–718.

18. Michael Toomim, Andrew Begel, and Susan L
Graham. 2004. Managing duplicated code with
linked editing. In Visual Languages and Human
Centric Computing, 2004 IEEE Symposium on.
IEEE, 173–180.

19. Mitchel Resnick, Brad Myers, Kumiyo Nakakoji,
Ben Shneiderman, Randy Pausch, Ted Selker, and
Mike Eisenberg. 2005. Design principles for tools
to support creative thinking. (2005).

20. Paul Clements and Linda Northrop. 2001. Soft-
ware product lines: Patterns and practice. Boston,
MA, EUA: Addison Wesley Longman Publishing
Co (2001).

21. Pete Warden, Why the term “data science” is
flawed but useful: Counterpoints to four common
data science criticisms., O’Reilly Radar Data
Newsletter, 3/2011
http://radar.oreilly.com/2011/05/data-science-
terminology.html

22. Philip Jia Guo. 2012. Software tools to facilitate
research programming. Ph.D. Dissertation. Stan-
ford University.

23. Philip J Guo and Margo Seltzer. 2012. BURRITO:
Wrapping Your Lab Notebook in Computational
Infrastructure. In Proceedings of the 12th.
USENIX Workshop on the Theory and Practice of
Provenance (TaPP 2012) . USENIX, 7–7.

24. R Studio https://www.rstudio.com/

25. Robert DeLine and Danyel Fisher. 2015. Support-
ing exploratory data analysis with live program-
ming. In Visual Languages and Human-Centric
Computing (VL/HCC), 2015 IEEE Symposium
on. IEEE, 111–119.

26. Robert Hawley. 1987. Artificial intelligence pro-
gramming environments. Intellect Books.

27. Sandeep Kaur Kuttal, Anita Sarma, Amanda
Swearngin, and Gregg Rothermel. 2011. Version-
ing for Mashups–An Exploratory Study. In Interna-
tional Symposium on End User Development.
Springer, 25–41.

28. Sruti Srinivasa Ragavan, Sandeep Kaur Kuttal,
Charles Hill, Anita Sarma, David Piorkowski, and
Margaret Burnett. 2016. Foraging Among an
Overabundance of Similar Variants. In Proceed-
ings of the 2016 CHI Conference on Human Fac-
tors in Computing Systems. ACM, 3509–3521.

29. Thomas H Davenport and DJ Patil. 2012. Data
scientist. Harvard business review 90 (2012), 70–
76.

30. Knitr tool, http://yihui.name/knitr/
31. YoungSeok Yoon and Brad A Myers. 2012. An

exploratory study of backtracking strategies used
by developers. In Proceedings of the 5th Interna-
tional Workshop on Co-operative and Human As-
pects of Software Engineering. IEEE Press, 138–
144.

32. YoungSeok Yoon and Brad A Myers. 2014. A lon-
gitudinal study of programmers’ backtracking. In
2014 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). IEEE,
101–108.

33. YoungSeok Yoon and Brad A Myers. 2015. Sup-
porting selective undo in a code editor. In Pro-
ceedings of the 37th International Conference on
Software Engineering-Volume 1. IEEE Press,
223–233.

34. Zeeya Merali. 2010. Computational science: Er-
ror, why scientific programming does not compute.
Nature 467, 7317 (2010), 775–777.

35. Ziv Bar-Joseph, Georg K Gerber, Tong Ihn Lee,
Nicola J Rinaldi, Jane Y Yoo, François Robert, D
Benjamin Gordon, Ernest Fraenkel, Tommi S
Jaakkola, Richard A Young, and others. 2003.
Computational discovery of gene modules and
regulatory networks. Nature Biotechnology 21, 11
(2003), 1337–1342.

	here

