Marks + Channels

Visualization
Torsten Möller
Overview

• Marks + channels

• Channel effectiveness
 – Accuracy
 – Discriminability
 – Separability
 – Popout

• Channel characteristics
 – Spatial position
 – Colour
 – Size
 – Tilt (angle)
 – Shape (glyph)
 – Stipple (texture)
 – Curvature
 – Motion
Readings

• Munzner, “Visualization Analysis and Design”:
 – Chapter 5 (Marks and Channels)

• Colin Ware:
 – Chapter 4 (Color)
 – Chapter 5 (Visual Attention and Information that Pops Out)

• The Visualization Handbook:
 – Chapter 1 (Overview of Visualization)

• Additional (background) reading
Marks + Channels

• Mark: basic graphical element / geometric primitive:
 – point (0D)
 – line (1D)
 – area (2D)
 – volume (3D)

• Channel: control appearance (of a mark)
 – position
 – size
 – shape
 – orientation
 – hue, saturation, lightness
 – etc.
According to Bertin ...

Position
Size
(Grey)Value
Texture
Color
Orientation
Shape

Marks
- Points
- Lines
- Areas

Semiology of Graphics [J. Bertin, 67]

© Munzner/Möller
<table>
<thead>
<tr>
<th>property</th>
<th>marks</th>
<th>ordinal/nominal mapping</th>
<th>quantitative mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>shape</td>
<td>glyph</td>
<td>§ □ ◆ △ S U</td>
<td></td>
</tr>
<tr>
<td>size</td>
<td>rectangle, circle, glyph, text</td>
<td></td>
<td>□ □ □ □ □ □ □ □ □ □ □</td>
</tr>
<tr>
<td>orientation</td>
<td>rectangle, line, text</td>
<td></td>
<td>▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼</td>
</tr>
<tr>
<td>color</td>
<td>rectangle, circle, line, glyph, y-bar, x-bar, text, gantt bar</td>
<td></td>
<td>min max</td>
</tr>
</tbody>
</table>

“Polaris: A System for Query, Analysis and Visualization of Multi-dimensional Relational Databases”, Chris Stolte and Pat Hanrahan
Progression

a) b) c) d)
Channel types: Where / What

Based on slide from Mazur
What vs. How Much channels

• What: **categorical**
 – shape
 – spatial region
 – colour (hue)

• How Much: **ordered** (ordinal, quantitative)
 – length (1D)
 – area (2D)
 – volume (3D)
 – tilt
 – position
 – colour (lightness)
Mark types

- tables: item = point
- network: node+link
- link types:
 - connection: relationship btw. two nodes
 - containment: hierarchy
Expressiveness + Effectiveness

• expressiveness principle:
 – visual encoding should express all of, and only, the information in the dataset attributes
 – lie factor

• effectiveness principle:
 – importance of the attribute should match the salience of the channel
 – data-ink ratio
Effectiveness of Mappings

- Effectiveness according to neurophysiology
- Cells in Visual Areas 1 and 2 differentially tuned to each of the following properties:
 - Orientation and size (with luminance)
 - Color (two types of signal)
 - Stereoscopic depth
 - Motion
Channels and Marks: Types and Ranks

Ordered: Ordinal/Quantitative
- How much
 - position on common scale
 - position on unaligned scale
 - length (1D size)
 - tilt/angle
 - area (2D size)
 - curvature
 - volume (3D size)
 - lightness black/white
 - color saturation
 - stipple density

Categorical
- What
 - region
 - color hue
 - shape
 - stipple pattern

Marks as Items/Nodes
- points
- lines
- areas

Marks as Links
- containment (area)
- connection (line)
Mackinlay’s Retinal Variables

[Quantitative]
- Position
- Length
- Angle
- Slope
- Area
- Volume
- Density
- Saturation
- Hue
- Texture
- Connection
- Containment
- Shape

[Ordinal]
- Position
- Density
- Saturation
- Hue
- Texture
- Connection
- Containment
- Shape

[Nominal]
- Position
- Hue
- Texture
- Connection
- Containment
- Density
- Saturation
- Shape

[Mackinlay, Automating the Design of Graphical Presentations of Relational Information, ACM TOG 5:2, 1986]
Effectiveness -- Accuracy

- perceptual judgement vs. stimulus
- Weber’s law: $S = I^n$
Effectiveness -- Discriminability

- how many colours can I tell apart?
- how many levels of grey etc.
- Ex: line width
Effectiveness -- Separability

- separable vs. integral channels
According to Ware ...

- **Integral** display dimensions
 - Two or more attributes perceived holistically

- **Separable** dimensions
 - Separate judgments about each graphical dimension

- Simplistic classification, with a large number of exceptions and asymmetries

![Diagram showing integral and separable dimension pairs]
Popout - Preattentive processing

- parallel (visual processing)
Overview

• Marks + channels
• Channel effectiveness
• Channel characteristics
 – Spatial position
 – Color
 • visual system
 • color models
 • color deficiency
 – Size
 – Tilt (angle)
 – Shape (glyph)
 – Stipple (texture)
 – Curvature
 – Motion
Channels

• Spatial position: most effective for all data types (remember the power of the plane)
• Size: ‘how much’, interacts with others
• Shape/Glyph: ‘what channel’
• Stipple/texture: less popular today
• Curvature
• Motion: large popout effect
Spatial position

2.05D

We only see the outside shell of the world.

One point along each ray.
Colour
Visual System
The eye and the retina
Retina detectors

• 1 type of monochrome sensor (rods)
 – Important at low light
• Next level: lots of specialized cells
 – Detect edges, corners, etc.
• Sensitive to contrast
 – Weber’s law: DL ~ L
Retina detectors

- 3 types of color sensors - S, M, L (cones)
 - Works for bright light
 - Peak sensitivities located at approx. 430nm, 560nm, and 610nm for "average" observer.
 - Roughly equivalent to blue, green, and red sensors
Color Opponency

© Munzner/Möller
Color Models
RGB Color Space

- Additive system
- Colors that can be represented by computer monitors
- Not perceptually uniform
HSL Color Space

- Hue - what people think of color
- Saturation - purity, distance from grey
- Lightness - from dark to light
- Not perceptually uniform
Lab Color Space

- Perceptually uniform
- \(L \) approximates human perception of lightness
- \(a, b \) approximate R/G and Y/B channels
- \(a, b \) called chroma
Luminance, Saturation, Hue

• Luminance
 – *How-much* channel
 – discriminability: ~2-4 bins
 – contrast important

• Saturation
 – *How-much* channel
 – discriminability: ~3 bins

• Hue
 – *What* channel
 – discriminability: ~6-12
Ordered Data

- Luminance
- Saturation
- Brightness
- Rainbow is a learned order!
Thanks to Moritz Wustinger
Thanks to Moritz Wustinger
Smiley based on http://upload.wikimedia.org/wikipedia/commons/b/bd/A_Smiley.jpg
Thanks to Moritz Wustinger
Color deficiency
Model “Color blindness”

- Flaw in opponent processing
 - Red-green common (deuteranope, protanope)
 - Blue-yellow possible (tritanope -- most common)
 - Luminance channel almost “normal”
- 8% of all men, 0.5% of all women
- Effect is 2D color vision model
 - Flatten color space
 - Can be simulated (Brettel et. al.)
 - http://colorfilter.wickline.org
Color Blindness

Protanope
No L cones
Red / green deficiencies

Deuteranope
No M cones

Tritanope
No S cones
Blue / Yellow deficiency

Source: M. Stone
Color-Blindness

Normal Protanope Deuteranope Lightness

Source: M. Stone
Overview

• Marks + channels
• Channel effectiveness
• Channel characteristics
 – Spatial position
 – Color
• Other channels:
 – Size
 – Tilt (angle)
 – Shape (glyph)
 – Stipple (texture)
 – Curvature
 – Motion
Channels and Marks: Types and Ranks

Ordered: Ordinal/Quantitative

- How much
 - position on common scale
 - position on unaligned scale
 - length (1D size)
 - tilt/angle
 - area (2D size)
 - curvature
 - volume (3D size)
 - lightness (black/white)
 - color saturation
 - stipple density

Categorical

- What
 - region
 - color hue
 - shape (circle, square, triangle, etc.)
 - stipple pattern

Marks as Items/Nodes

- Points
- Lines
- Areas

Marks as Links

- Containment (area)
- Connection (line)
Relativ vs. absolute judgement

• Weber’s law says that everything is relative, i.e. the “intensity” depends on the background signal
Relativ vs. absolute judgement

• Weber’s law says that everything is relative, i.e. the “intensity” depends on the background signal
Relativ vs. absolute judgement

• Weber’s law says that everything is relative, i.e. the “intensity” depends on the background signal