High-Dimensional Data Analysis
Michael Gruber
Overview

• **Dimstiller**
 - DimStiller: Workflows for dimensional analysis and reduction, Stephen Ingram, Tamara Munzner, Veronika Irvine, Melanie Tory, Steven Bergner, Torsten Möller, Proceedings of the 5th IEEE Conference on Visual Analytics in Science and Technology (VAST) 2010, pp. ???--???, October 2010

• **DOSFA**
 - Interactive Hierarchical Dimension Ordering, Spacing and Filtering for Exploration of High Dimensional Datasets. Jing Yang, Wei Peng, Matthew O. Ward and Elke A. Rundensteiner .Computer Science Department, Worcester Polytechnic Institute, Worcester, MA 01609
Dimstiller: Intro

- System for dimensionality reduction and visualization
- Works on data tables
- Provides large amount of possible transformations and visualization options
- Workflows by chaining operators together
- Guides user to choose most useful operations
Dimstiller: Architecture

- **Expression**
 - Pipeline of Operators

- **Operator**
 - Data Transformation
 - Visual display

- **Workflow**
 - Predefined or saved data-independent expression
Dimstiller: UI Overview
Dimstiller: Operators

- Operators
 - Cull: (Var|Name)
 - Collect: pearson
 - Data: Norm
 - Reduce: (PCA|MDS)
 - View: (SPLOM|Histo)
 - Input, Attrib

- Easily extensible by user
Dimstiller: Architecture

- Works on Tables
 - Input as cvs

- Dimensions
 - Data: quantitative vs categorical
 - Attributes: colormaping, selection
 - Ignored for data transformations

- View
 - Visual representation of associated table
 - Fully interlinked
 - Selection propagation
Dimstiller: View examples
Dimstiller: Case Studies

- **Sustainability Simulation**
 - Social/environmental indicators affected by simulated government policy
 - 294 dimensions
 - Cull:variance – reduced to 260
 - Collect:pearson
 - Threshold 1.0 – 147
 - Threshold 0.8 - 22
DOSFA: Intro

- Interactive Hierarchical Dimension Ordering, Spacing and Filtering for Exploration of High Dimensional Datasets

- Alter arrangement of dimensions
- Similarity-based spacing
- Similarity/variance-based filtering
DOSFA: Visualization Techniques

- Scatter-plots
- Parallel Coordinates
- Star Glyphs
- Other arrangement-sensitive techniques
DOSFA: Dimensional Hierarchy

- Clustered by similarity
 - Iterative clustering
 - Representative dimensions
 - Data clusters

- drill-down/roll-up, pan, zoom, and rotation, scale, orientation, distortion
DOSFA: Dimensional Ordering

- Make similarities obvious
- More prevalent placing
- Similarity-oriented
 - Optimal (high complexity)
 - Heuristics
- Importance-oriented
 - Based on variance
- Interactive
DOSFA: Dimension Spacing

- Especially useful for parallel coordinates
- Places less similar dimensions further apart
- Implemented using pairwise correlation-factor
- Distance also influenced by clusters

- Interactive
 - Zooming, panning, distortion
DOSFA: Ordering/Spacing
DOSFA: Dimensional Filtering

- Based on hierarchy
- Automatic
 - Recursive descent into hierarchy
 - Merge very similar dimensions
 - Ignore “unimportant” dimensions
- Interactive
 - Adjust threshold-values
 - Selectively only on certain clusters
 - Manually add/remove dimensions
Figure 1: InterRing. (a): Dimension hierarchy of OHSUMED dataset in InterRing. (b): after reordering. (c): after distortion. (d): after roll-up operation.
Figure 3: Star Glyphs. (a): OHSUMED dataset without DOSFA. (b): after ordering. (c): distorted star glyphs. (d): after filtering.
DOSFA: UI

(a)

(b)