
POWDEr : Physics Online Visualization & Verification Data Explorer
Manfred Klaffenböck∗

University of Vienna
Philipp Sturmlechner†

University of Vienna

ABSTRACT

POWDEr : Physics Online Visualization & Verification Data Ex-
plorer.

Index Terms: H.5.0 [Information Interfaces and Presentation]:
General—Experimentation; J.2 [Computer Applications]: Physical
Sciences and Engineering—Physics; G.1.2 [Numerical Analysis]:
Approximation—Linear Approximation;

1 INTRODUCTION

This project was motivated by Dr. Charles Rogers. Dr. Rogers does
powder X-ray diffraction on crystalline structures filled molecules
with a certain electrostatical behaviour. He attempts to create ma-
terials with interesting characteristics but cannot be sure what the
molecular structure looks like until he examined the scattered X-
ray spectrum and found a crystal and molecule which generates the
same spectrum in a simulation.

Our tool is meant to help with the search by allowing the user
to sample the parameter space, calculate discrepancy to the mea-
surement, look at the spectrum, and look at the four dimensional
parameter space in a comprehensible way.

The users of this tool are on the one hand all researchers who
need to compare measurement data in the form of a spectrum to
simulation data, where the simulation takes multiple input parame-
ters. On the other hand scientific data often needs to be made public
and a tool like this one could help present the findings to a broad
audience.

There are two main data files needed by this application. One
must describe the measurement, it takes the form of a .cvs file. The
other is the configuration for the simulation and depends on the
simulation implementation. Usually a description of the crystal and
one of the molecule is needed.

2 RELATED WORK

Our tool is certainly mostly related to a tool called Tuner (see [2]).
Tuner is a tool especially developed to explore multidimensional
parameterspaces. One of the key differences between Tuner and
POWDER is that Tuner uses a rather small number of random sam-
ple points, whereas POWDER uses 10000 exactly calculated carte-
sian samplepoints. Tuner uses for interpolation a gaussian process
model, whereas POWDER uses linear interpolation between these
10000 samplepoints. Another difference, more on a lowlevel im-
plementation aspect, is that Tuner is a Desktop tool, but POWDER
is an online tool. The idea is to make collaboration between locally
separated researchers easier.

Another tool which we drew inspiration from is World Lines (see
[3]). This tool also tries to combine the exploration of a multiple
parameter space with the detailed depiction of a certain set of pa-
rameters. It differs from our tool in the way that it is actually de-
signed for timed data and realtime scenarios, whereas POWDER

∗e-mail: manfred.klaffenboeck@univie.ac.at
†e-mail: a0802706@unet.univie.ac.at

is mainly for static data and the comparison between sampled and
measured data.

Even though not directly related work, we took inspiration for
the design of the hypersclices from the paper Continious Scatter-
plots (see [1]). In this paper the authors suggest to colorcode the
density of a certain element in form of a heatmap. We took this ba-
sic idea and use it now to represent the χ2 value on the hyperslices
as a colorvalue mapped onto a heatmap.

3 APPROACH

Our design evolved over the duration of development from a detail
only to an overview first approach. The key to this tool is the nav-
igation of the four dimensional sample space. On the left side of
screen there is a view that shows your current location in this high
dimensional space via hyperslices. You can also see a very reduced
piece of information about every other point in the slices in the form
a goodness of fit metric.

Once a point has been chosen the user shifts her attention to the
right side, where a detail view is shown. The exact model at the
chosen point gets calculated is is overlain by the measurement data.
Differences are easily visible, each peak contributing to the sim-
ulation output can be marked and thereby tracked should the user
choose to pick a new point in the parameter space.

The reason for the shift from detail only to overview was partly
the papers mentioned in related work but for the most part a discus-
sion with an experianced visualization professor who helped us see
the main challenge the user has to overcome in the whole process.

4 IMPLEMENTATION

4.1 User interaction

The user has to provide the following:

• a .pbd file, representing a crystal

• a .xyz file, representing a molecule

• a script, representing the model which operates on the crystal
and molecule files

• a .csv file, containing the results from the X-ray powder
diffraction experiment

The model is dependent on the crystal and the molecule to calcu-
late the reflection for this pair. In order for the model to work you
have to specify four parameters:

• Rotation: the rotation of the molecule inside the crystal.

• Depth: how deep is the molecule inside the crystal

• Density: how high a proportion of the wells in the crystal are
actually populated with molecules

• Crystal wall rotation: if the molecule is big, the crystal wall
can be distorted, which can be described as a rotation.



Within these 6 hyperslices, you can drag a cross around to vary
the parameters. A line in the scale to the left shows the colorvalue
of the current selection, representing the goodness of this particular
point. Once the selection is done and the mousebutton is released,
an asynchronous call to the server is undertaken, sending the current
selection of parameters. For these parameters, an exact calculation
is done and the results are sent back to the client. These are then
represented in the detailview for further inspection.

One of the shortcomings in formerly existing visualization so-
lutions for this problem was, that individual peaks can not be seen
the entire time, since it would leave to visual cluttering. So we
extracted each peak into its own little window, where they can be
spotted individually the entire time. You can hover over and select
these mini peaks, in order for them to appear in the main window,
together with the graphs of the overall reflection ((see Figure 3).

4.2 Notes on interpolation
We do cartesian sampling with 10 sample points per parameter,
yielding 10000 samples in total.

The result is an array of peaks (in our case 32, dependent on the
researched crystal and molecule) corresponding to refraction angles
in the experiment, that is further compared with the according peaks
in the experimental data.

In a next step the model has to be sampled at exactly the same
points where the experimental data was taken. These are in our case
1041 points.

The comparison of goodness between the two (sampled and mea-
sured) is done by a χ2 test. All the individual sample points are
evaluated against this test and the result is a scalar value, indicat-
ing the goodness of the chosen input params against the measured
experimental data. The value of a single χ2 test gets mapped to a
value between 0 and 1, where 0 indicates worst correlation and 1
indicates perfect correlation.

The four dimensional space, described by the four formerly de-
scribed variables, is displayed as 6 hyperslices, where each slice
represents one unique hyperplane. Each slice shows the variation in
goodness over two dimensions, leaving the remaining dimensions
fixed. The scalar value is represented in form of a continuous col-
orvalue, where the colors are mapped onto a heatmap. Since there
are only a finite number of sample points, but an infinite number of
possibilities, some form of interpolation between the samplepoints
must be undertaken. Because of the rather vast amount of sample
points, we chose to do linear interpolation, because we thought it
might yield the most approximate results.

4.3 Architectural desicions
Since this project was planned for web browsers, we had to go with
a client server architecture. On the front end there is no choice as
to what language should be used, JavaScript is the only one with
wide support. jQuery was used for the ease of selection and simple
HTML manipulation. D3 helped with the drawing of the graphs.
The parameter exploration part of the view uses webGL to directly
render on the graphics card and do interpolation between points.
For the markup we included Twitter Bootstrap.

On the server side we decided to use python and the django web
application framework. It allows easy database access, generating
web pages from templates, with it’s own template language, and
session management amoung other things. We chose to use the
sqlite3 database since it enjoys native support from python.

The sampling of the parameter space was to slow in python and
therefore had to be implemented in C with python bindings via
ctypes. The C implementation uses OpenMP to fully utilize the
CPU powder for the most costly operations (very low sampling fre-
quency still yields approximately 320 million sampling steps).

On the server side the parameter space sampling was by far
the most extensive task. Bulk reads and updates from and to the

database were the first steps to make these task run in reasonable
time, this moved the bottleneck from disk access to computation
time. An implementation in C with python bindings helped to re-
duce the runtime from that point. Finally the usage of OpenMP
to use all available cores gave a quadruple speedup and made the
sampling feasible.

5 RESULTS

Step one the user picks the experiment data set and the simu-
lation sampling batch run she wants to compare (see Figure 1).

Step two the user navigates the parameter space to a point she
is interested in, the view on the right side updates on the fly (see
Figure 2).

Step Three the user shifts her attention to the right side and
selects a peak she find interesting by clicking it’s miniature repre-
sentation on the bottom or clicking the peak directly (see Figure
3).

Step Four the user picks other positions in the paramter space
by clicking or dragging the haircross in the hyperslices and watches
the peaks vary. The selection makes sure the user can still easily
track the chosen peak (see Figure 4).

5.1 Further notes
Due to the implementation in WebGL on the frontend and C on
the back end the performance of the system is amazing. Even on a
three year old laptop the transitions of hyperslices in the frontend
run absolutely smoothly.

6 DISCUSSION

One of the major strengths of the implementation is it’s perfor-
mance. It runs smooth on a laptop, it is implemented in a browser
and thereby platform independent and the server does a lot of the
heavy lifting reducing system requirement for the user further.

One of the weak points of our implementation is that it is tailored
to this specific usecase, extending the current implementation will
proof to be a difficult task.

The main lesson of this project is focus on the major problem.
Try to see what the user really has to accomplish and where she
could struggle. The shift in design gave us this insight. Besides that
we found that Python with the Django framework and a JavaScript
front end application play very nice together. Dividing responsibil-
ities into back end and front end worked very well, we would opt to
divide workload this way again.

ACKNOWLEDGEMENTS

The authors wish to thank Charles T. Rogers and Torsten Möller
for their support during this project. They would also like to
thank Thomas Torsney-Weir and Mike Philipps for some very good
technical suggestions regarding the effective implementation of the
heatmap.

REFERENCES

[1] S. Bachthaler and D. Weiskopf. Continuous scatterplots. Visualiza-
tion and Computer Graphics, IEEE Transactions on, 14(6):1428–1435,
Dec. 2008.

[2] T. Torsney-Weir, A. Saad, T. Moller, H.-C. Hege, B. Weber, and J.-M.
Verbavatz. Tuner: Principled parameter finding for image segmenta-
tion algorithms using visual response surface exploration. IEEE Trans-
actions on Visualization and Computer Graphics, 17(12):1892–1901,
2011.

[3] J. Waser, R. Fuchs, H. Ribicic, B. Schindler, G. Bloschl, and M. Groller.
World lines. Visualization and Computer Graphics, IEEE Transactions
on, 16(6):1458–1467, Dec. 2010.



Figure 1: select your data

Figure 2: explore the parameterspace



Figure 3: inspect your selection

Figure 4: do further exploration


