
Parameter Space Exploration for VisRSeq
Joseph Pober

University of Vienna

ABSTRACT

We propose an extension to the software VisRSeq [5], which allows
non-programmers to use R through a GUI, provides explanatory
tool-tips and default values to further support inexperienced users.
The previous version of VisRSeq only allowed the user to enter a
single set of parameters and therefore to generate a single output.
This extension enables users to input ranges of parameters instead
of only a single set of parameters to visualize their data. The pro-
gram samples the provided parameter space and generates multiple
outputs. To present these outputs to the user VisRSeq clusters it us-
ing hierarchical agglomerative clustering. These resulting clusters
can be interactively explored by the user.

Index Terms: Clustering, Interactive Visualization, Parameter
Space Exploration, VisRSeq

1 MOTIVATION

VisRSeq allows users to visualize datasets through R-Apps. This
helps people with little to no experience in programming to utilize
R. Instead of actually programming the desired plot, one simply se-
lects a visualization method (i.e. histogram) and enters the param-
eters into the provided text boxes. The problem is that this whole
workflow only works with exactly one set of parameters at a time.
Many users will want to test multiple sets of parameters to find the
desired result. Entering a set of parameters and then having to wait
for the computer to finish the calculations does not only waste a lot
of time it also interrupts the workflow of the user considerably.

Solving this problem requires users to be able to enter ranges
of parameters instead of only a single set. With this, a problem in
presentation arises, since many results in form of complex objects
may appear and have to presented to the user. This will be done by
clustering the results and only showing the median of those clusters
to the user. They can then choose to inspect a cluster, which either
shows all results of that cluster or shows again some sub-clusters
of this cluster. Following the design principle of showing first an
overview and only later zooming in and providing details.

1.1 Data

The data to be used with the bioconductor packages is a table con-
sisting mainly of floats. Each row represents a gene and each col-
umn a cell type. The floats try to show the likelihood of a gene
being responsible for a cell to form a certain cell type. Since this is
real world data, there is quite a lot of noise and often multiple sam-
ples of the same type must be taken and recorded to be sure that the
results are not distorted too much by noise.

Since the program delivers a general solution, most Apps work
with vastly different data, but the bioconducter packeges (i.e.
edgeR) require a specific structure as described above.

1.2 Users

The users will have little to no programming knowledge, but want
to have powerful visualizations of their data. Therefore a GUI is
provided and default values to support the users performing their
tasks.

1.3 Tasks
Discover Users want to discover the underlying structure of

their data. Either by finding clusters or a good set of parameters to
be used for similar data.

Explore Neither the location, nor the exact plot is known to the
user. Therefore plots are clustered based on similarity to support the
user in their exploration task.

Identify The parameters used to generate the median of a clus-
ter are shown when it is selected.

Compare Often a user will want to compare multiple clusters
with each other to find differences or to figure out which cluster
they should explore next.

Summarize Clustering of the output plots is used to provide a
general overview of the visualizations.

Targets The distribution of all parameters used to generate the
output is shown. This can be compared to the distribution of pa-
rameters in a specific cluster.

The variance inside of each cluster and its size in relation to its
parent is shown to support users finding outliers and avoid exploring
homogeneous clusters.

2 RELATED WORK

[6] provided many different visualization techniques and the task
abstraction used in section 1.3.

VAICo [7] allows users to compare many images and highlight
areas that are different. It searches for pixels in all pictures, which
are different and groups them together based on proximity. This
tool makes it easy to compare images, which are mostly the same
with slight differences. Their pixel grouping algorithm and analy-
sis of image differences can be used for image based comparison
of different plots for VisRSeq. Even though VisRSeq also provides
images of plots it is not desired to cluster them according to their
pixel values. Instead it is much more preferred to use data, gener-
ated by R, and the similarity measure discussed in [10].

Clustering and similarity measures are also discussed in [12, 2,
1] but those lack simplicity or flexibility provided by [10], which
allows comparisons of completely different clusterings. It might
be a bit simplistic, but achieves good results, since plots that are
visually similar get clustered together.

[8] discusses various general methods to visually explore a pa-
rameter space. Since informed trial and error strategies are often
extremely time and resource inefficient, providing the program with
a parameter space is a more desired approach. Using this approach
a problem in presentation arises, since not only one but multiple
outputs have to be presented to the user. Juxtaposing them works
for small sets, but scales poorly.

The Global-to-Local strategy proposed in [8] was used to ad-
dress exactly this problem, by providing the user first with an
overview, achieved through clustering, and letting them drill down
to specific, individual outputs.

[3] proposed an algorithm to generate as square as possible tree
maps to combat very long and thing rectangles that can appear us-
ing traditional tree maps. Those long rectangles are undesired, since
they make interacting with them difficult and almost impossible to



read if they convey more then just area information. It is also diffi-
cult to compare sizes of elongated rectangles.

We did not encode the size (amount of plots) of the cluster in its
size on the screen, because that could potentially lead to clusters
that are difficult to read and compare. The idea of keeping every-
thing as square as possible was used instead in the arrangement on
screen of the clusters themselves.

[4] provided insight into the task of comparing complex objects
with each other. The different comparison techniques were used for
the task of comparing clusters in VisRSeq, since those are complex
objects.

Scented widgets as presented in [11] are a valuable tool in vi-
sualizing interface elements. They add an additional visual scent
to a widget, which supports users in navigating the visualized in-
formation space. This approach was used in VisRSeq to display
additional histograms above input ranges to show the user the dis-
tribution of the chosen parameters.

3 APPROACH

The most important question always was how to present many com-
plex objects, which all need a lot of screen space to be readable,
to the user. Clustering was used to reduce the potential amount
of simultaneous objects on the screen. Using the Global-to-Local
strategy by [8].

The visualization design focuses on allowing the user to interac-
tively and efficiently exploring the plots generated by the VisRSeq.

For this design study [9] was used as a guideline. The work
was done iteratively with frequent meetings with the collaborator to
gather feedback. This was used to improve upon previous results.

4 RESULTS

4.1 Input
The previous version of VisRSeq only allowed for a single set of
parameters, we present the updated version, which also enables the
user to input ranges of parameters. Figure 1 shows the parameter
panel when the user just wants a single output in comparison to the
parameter panel when the user desires ranges of parameters.

The input method, group1 and group2, has not changed, since
the program will use the same input for each run. The attributes
selected here will be the ones used from the provided input dataset
for the visualization.

The drop-down-menu was changed to a series of check-boxes, to
allow for multiple selection.

All numerical inputs, integers and doubles, where changed from
a spinner to double sliders. These are used to select the min and
max values of this parameter. The slider with the lower value will
be automatically the minimum and the slider with the larger value
will be the maximum. The values next to the slider display the
current minimum and maximum.

The drop-down-menu on to bottom left allows users to switch
between these two views. Next to it the amount of runs can be
entered.

4.2 Presentation
Figure 2 shows the program, before generating output. The panel
”A” stores all imported input files and the data generated by R. ”B”
keeps track of the users history and supports them in navigating
through the output. ”C” is the workspace where the current clusters
are displayed. ”D” is the apps panel from which the user chooses an
app to visualize their data. ”E” is the previously discussed parame-
ter panel. ”F” shows the console and displays output messages.

Figure 3 shows how the results are displayed after the user has
entered the desired ranges for the parameters and hit the ”Run” but-
ton. The output is clustered based on a similarity measure, provided
by [10]. The resulting clusters are again clustered to form a hier-
archy until a sufficient amount of clusters is reached. The resulting

top level clusters of this non-binary tree are shown to the user in the
workspace panel.

Each cluster is represented by the plot which is the most similar
to all other plots in its clusters, which is the median after sorting
them by inter-similarity to each other.

The clusters are arranged in a grid that is as square as possi-
ble, sorted by their size. A square grid has two benefits: most
plots are square themselves and therefore do not appear squished or
stretched, while using the provided space efficiently; the workspace
area is very often square which leads to a square grid using its space
well.

Additional information about each cluster is located at the very
top of it. The first two elements ”Compare” and ”Inspect” only
appear when the user selects or hovers over a cluster to avoid clut-
tering. The last two, ”Variance” and ”Size” are always visible to
allow for easy comparison since eyes beat memory as discussed in
[6]. This is also the reason why all child clusters are presented in
juxtaposition to each other. Since this does not scale very well the
user can force the program to always have at most a certain number
of clusters visible, by allowing a more generous clustering.

The compare check-box marks a cluster for comparison. If it is
checked, the box it self, without the text, stays always visible to al-
low the user to easily see which clusters are marked for comparison
and uncheck them quickly again.

Clicking the ”Inspect”-Button moves the user one layer down the
cluster tree and displays the children of the this cluster.

The variance field displays the variance found inside of this clus-
ter. It helps the user in deciding which clusters are worth exploring
further and which ones should be left alone. A cluster with only
very little variance has very homogeneous plots, which are very
similar to the median, which is already presented as the image of
the cluster. Therefore the user does not need to explore this clus-
ter any further. If a cluster has a high variance the opposite is true
and the plots are very heterogeneous. This means that this cluster
is potentially worth exploring.

Colour encoding was used to give the user an immediate intu-
ition for the meaning of the variance. The colour has five levels
of saturation, ranging from grey to red. Grey maps to a low vari-
ance, being a ”boring” colour and not being very noticeable. It is



Figure 1: Parameter panels: On the left for a single set of parameters, on the right for ranges.



Figure 2: Program while entering parameter ranges. A: Input, B: History, C: Workspace, D: Apps, E: Parameters, F: Console

Figure 3: Program displaying results.



supposed to not make the user interested in it and not get their at-
tention, while also providing the exact value of the variance in this
cluster. Red is used to display extreme variance and guide the user
to further explore such a cluster.

The last element displays the size of the cluster in comparison
to the size of its parent cluster. Size is measure by the amount of
plots a cluster has. A bar is drawn to show how much percent the
child cluster’s size takes of the parents total size. On top of that the
actual values are written. The background of the bar is light grey,
like all backgrounds, while the filled-in part is yellow, like the all
other elements that are linked to selected individual clusters.

4.3 Parameter Distribution
Figure 4 shows the parameter panel, after the program ran and
produced output. The distribution of all parameters used to generate
all output is shown as grey histograms. The values next to the slider
beneath the histogram show the minimum and maximum value used
to generate the output. This might differ from the values entered by
the user, because the program only samples the parameter space and
does not explore it exhaustively. Hovering over a bar of a histogram
displays its x and y value.

If a cluster is selected an additional histogram is shown above
superimposed on the histogram displaying the distribution of all
parameters. The new histogram shows the distribution of the pa-
rameters used in generating all plots that are contained in the se-
lected cluster. The double sliders, previously showing the range of
the whole distribution now only show a single value. This is the
value that was used to generate the specific plot that was chosen to
represent the selected cluster.

The color gray for the general distribution was chosen to make
comparison with the selected cluster easier, which has a very satu-
rated and bright colour. It also is supposed make the user associate
it with something in the background, since the histogram’s back-
ground colour itself is a lighter gray. This helps to further distin-
guish it from an interactable object.

4.4 History
After a the user inspects a cluster and therefore goes to the next
level of the graph to view its children a history node will be created
and attached to the history panel, see figure 5. This node displays
the children of the parent cluster, or in other words: exactly the
view the user saw before inspecting a cluster. The cluster that was
chosen for inspection will have a yellow border to show the user
from where they came. They can go down additional levels of the
tree and for each level one node will be created.

The nodes do not only provide the user a view of their history
and the path that they took exploring the data. Users are also able
to quickly navigate to the desired level of the tree by clicking on the
corresponding history node.

4.5 Comparison
Clusters which are marked for comparison can be compared by
clicking the ”Show comparison” button. This shows a view to the
user only consisting of the clusters which were marked for compar-
ison. The clusters are arranged in a as square as possible grid to
allow the user easy comparison. Using the ”Back” button gets the
user back to the view they were previously using.

4.6 Performance
The program keeps being highly interactive, even with big amounts
of data. Generating the plots takes a long time, which is expected,
but could be improved. The similarity measure is not optimally cal-
culated yet, since some redundancies occur and some values could
be saved and kept for future calculations.

The generating of the plots lends itself perfectly to prallelization,
which would provide a significant performance increase.

4.7 Evaluation

Since the program is not yet complete and does not support all re-
quired functionality, no real evaluation was performed yet. The fre-
quent meetings with the collaborator provided significant feedback,
which was used to continually adopt and improve the program.

One major addition due to feedback was the effort to more
clearly convey to the user which parts of the program are inter-
actable and which are not. This was mostly done by providing small
borders around objects as soon as the user hovers over them or dis-
play them in a certain colour.

The presentations in class were also great feedback and helped
to get the project into the right direction, especially during the pro-
totype phase.

The evaluation process will start as soon as possible to get feed-
back from the actual users.

5 IMPLEMENTATION

The program is written in Java using mainly swing elements for its
layout. R was used for the plots and Rserve as a link between Java
and R.

Getting into the code and learning to understand it proved to be
the most difficult task. This is due to the program still being under
heavy development and therefore providing very little documenta-
tion and partially dead or unintuitive code. This is not a direct crit-
icism but more due to the nature of code that is unfinished. Given
the scope of the project it took considerable effort to actually start
working and to figure out what does what.

6 DISCUSSION

6.1 Strengths and Weaknesses

Major drawbacks of this visualization include the poor scalability
of the history nodes. Those are smaller versions of the workspace
at a specific time. If many clusters are shown at the same time a
smaller version of this could make them too small to decipher.

The general presentation is also plagued by this problem. Too
many clusters at the same time leads to very small plots.

Both of these issues can be combated by forcing the program to
do more lenient clustering and therefore having less plots visible at
the same time.

An other issue is the ugly design of the interface elements and a
general lack of aesthetics for the whole program. Those issues will
be addressed as soon all features are implemented.

A strength of this tool is that users can quickly figure out the
distribution of the parameters used, due to scented widgets. It also
allows users to quickly find interesting clusters to explore, because
of the variance and size display of each cluster.

6.2 Lessons Learned

This was the first time I had to work with code provided by someone
else and to build on top of completely unknown architecture. The
time investment can be massive to get started, depending on the size
of the already existing code base.

”Fail faster” truly is an important mantra. Getting feedback as
quick as possible is incredibly important, because some visualiza-
tion techniques I thought were great turned out to be completely
useless or overshadowed by techniques I just designed as a back
up, but the users really liked.

The importance of inspecting existing work flows and trying to
improve them to make them more efficient. Using VisRSeq without
parameter space analyses can be for some use-cases be incredibly
inefficient, but providing the program with a parameter space and
the user with many plots to explore at once hopefully proves to be
way more efficient.



Figure 4: Parameter panels after all runs were finished: On the left no cluster is selected, on the right a cluster is selected.



Figure 5: Program showing results after going down one level of the tree and saving the history.

REFERENCES

[1] M.-F. Balcan, A. Blum, and S. Vempala. Clustering via similarity
functions: Theoretical foundations and algorithms, 2008.

[2] C. Blundell, Y. W. Teh, and K. A. Heller. Discovering non-binary hi-
erarchical structures with Bayesian rose trees. In K. Mengersen, C. P.
Robert, and M. Titterington, editors, Mixture Estimation and Applica-
tions. John Wiley & Sons, 2011.

[3] M. Bruls, K. Huizing, and J. van Wijk. Squarified treemaps. In In
Proceedings of the Joint Eurographics and IEEE TCVG Symposium
on Visualization, pages 33–42. Press, 1999.

[4] M. Gleicher, D. Albers, R. Walker, I. Jusufi, C. D. Hansen, and J. C.
Roberts. Visual comparison for information visualization. Information
Visualization, 10(4):289–309, Oct. 2011.

[5] Y. Hamid, M. Torsten, C. L. Matthew, M. K. Mohammad, Steven,
and J. M. Jones. Visrseq: R-based visual framework for analysis of
sequencing data. In 5th Symposium on Biological Data Visualization,
2015.

[6] T. Munzner and a. Maguire. Visualization analysis and design. AK
Peters visualization series. CRC Press, Boca Raton, FL, 2015.

[7] J. Schmidt, M. Groller, and S. Bruckner. Vaico: Visual analysis for im-
age comparison. Visualization and Computer Graphics, IEEE Trans-
actions on, 19(12):2090–2099, Dec 2013.

[8] M. Sedlmair, C. Heinzl, H. Piringer, S. Bruckner, and T. Möller. Vi-
sual parameter space analysis: A conceptual framework. IEEE Trans-
actions on Visualization and Computer Graphics / Proceedings IEEE
InfoVis 2014, 20(12):pp. 2161–2170, 2014.

[9] M. Sedlmair, M. Meyer, and T. Munzner. Design study methodol-
ogy: Reflections from the trenches and the stacks. Visualization and
Computer Graphics, IEEE Transactions on, 18(12):2431–2440, Dec
2012.

[10] G. Torres, R. Basnet, A. Sung, S. Mukkamala, and B. Ribeiro. A sim-
ilarity measure for clustering and its applications. Int. J. of Electrical,
Computer, and Systems Engineering, 3(3), 2009.

[11] W. Willett, J. Heer, and M. Agrawala. Scented widgets: Improving
navigation cues with embedded visualizations. IEEE Trans. Visual-
ization & Comp. Graphics (Proc. InfoVis), 13:1129–1136, 2007.

[12] Y. Yang, F. Liang, S. Yan, Z. Wang, and T. S. Huang. On a theory
of nonparametric pairwise similarity for clustering: Connecting clus-
tering to classification. In Z. Ghahramani, M. Welling, C. Cortes,

N. Lawrence, and K. Weinberger, editors, Advances in Neural In-
formation Processing Systems 27, pages 145–153. Curran Associates,
Inc., 2014.


