
Visualisation and Visual Data Analysis
Milestone 4

NeuroVisualizer - Understanding Neural

Networks Made Simple

Project Page:
http://wwwlab.cs.univie.ac.at/~a1125503/vis/

Oliver Guggenberger, a1125503
Christoph Seebacher, a1127870
Ernst Naschenweng, a0826057

January 2018

1

http://wwwlab.cs.univie.ac.at/~a1125503/vis/

Contents

1 Motivation 3

2 Related Work 4
2.1 General Research . 4
2.2 VisRSeq . 4
2.3 Visual Parameter Space Analysis: A Conceptual Framework . . . 4

3 Approach 6
3.1 Main Dashboard . 6
3.2 Overfitting Dashboard . 7
3.3 Guided Mode . 7

4 Implementation 8
4.1 Technologies used . 8
4.2 Implementation challenges . 8

5 Results 9
5.1 Scenario of use - optimal parameters for spiral data type 9
5.2 The Kernel Trick . 10

5.2.1 Insights . 11
5.2.2 XOR . 11
5.2.3 Gaussian . 11
5.2.4 Circle . 11
5.2.5 Spiral . 11

5.3 Performance . 11

6 Discussion 12
6.1 Strengths . 12
6.2 Weaknesses . 12
6.3 Lessons Learned . 12

7 Task Separation 13

8 References 13

2

1 Motivation

Our application uses the dataset from the CASS 2017 - Summer School. This
dataset contains random shapes and noise of 100,000 different topologies of
neural networks. These topologies differ mainly in the number of hidden layers,
number of neurons, the used activation function and the learning rate. The
results are in the columns of the TPR (true positive rate) and FPR (false positive
rate) which describe the effectiveness of the neural nets.

Our goal is to provide a tool which lets users explore the dataset to find
out which parameters result in good neural networks. Two things are novel
about our approach. Firstly, our application analyzes 100,000 different neural
networks while other visualizations only focus on one topology (with sometimes
very large datasets). Secondly, we do not visualize the output of different layers.
Instead, we focus on correlations between different parameters to gain insights
in which settings have the greatest impact, positive or negative, on the quality
of a neural net. This is essential for a global understanding of neural network
parametrization where the visualization of individual layers is irrelevant. How-
ever, we do provide a graphical output of the classification result for each neural
network available on demand. Multiple images can be browsed simultaneously
with all relevant data shown in the tooltip.

Our application provides two dashboards. A general dashboard which follows
Shneiderman’s mantra to provide an overview first, enable zoom and filter to
delve deeper into the data and show details on demand through a tooltip for
each topology. Since overfitting in the training of neural networks is a challenge
that deserves special attention, we created a second dashboard which lets a user
tackle this specific question in a specialized user interface. There is also a guided
mode with explanations of the most important concepts of neural networks to
make it easier to understand and use our NeuroVisualizer.

3

2 Related Work

2.1 General Research

Our reserach for related work did not find any similar approaches. There are
publications which focus on single neural networks and visualize them for large
datasets like in Zeiler and Fergus. What our application does, however, is
correlate the parameter settings for 100,000 different neural networks. It appears
that this is a novel approach for our specific use case.

2.2 VisRSeq

Figure 1: VisRSeq User Interface

VisRSeq is a tool originally developed to visualize gene sequencing data. It
can be extended with user defined visualizations using R. We evaluated VisRSeq
during the low-fi prototyping phase if it could be used for our visualization, but
we decided to use Tableau for the platform independance (web browser) and
efficiency of implementation.

2.3 Visual Parameter Space Analysis: A Conceptual Frame-
work

Sometimes if you have to handle problems or models with input parameters and
therefor you get output parameters, like it is usual in neural nets, often it isn’t
the fastest way to work with the trial and error method for every single setup.
Instead it would be a good method defining a space where all your different
input parameters were set and you can now let these bunch of setups running
through your model over night and get all the results at the early morning. This
paper describes a framework which provides this functionality and way more.

4

The main focus of our project was to create an environment that lets users
explore the impact of different setup parameters in a structured way. So this
literature wasn’t directly fitting our project assignment, because we already
used the dataset of 100,000k different network topologies.

5

3 Approach

Figure 2: The NeuroVisualizer application integrated in the project website

3.1 Main Dashboard

The main view of NeuroVisualizer is a scatter plot called ”DataPoint Map”.
It correlates all neural nets by the TPR and FPR (true/false positive rate,
respectively) of the test data. A high TPR and a low FPR distinguishes ”good”
neural networks. Good neural nets are therefore in the bottom right corner
while bad ones are in the top left. The view supports brushing so selecting a
number of points will filter all other views.

The views to the right of the scatter plot show the number of selected points
by various criteria such as the activation function or the value of the learning

6

rate. By selecting a number of data points one can see which parameter values
provide the largest share of the number of selected points.

By having a scatter plot as the main view with the main quality parameters
on both axis, one can easily identify ”good” and ”bad” neural networks which
can then be analyzed in more detail. The scatter plot also highlights the differ-
ent problem types like ”spiral” or ”circle” by color encoding. With the filters
provided one can reduce the data space more and more until only the topolo-
gies of interest are left. From there, individual networks can be analyzed while
returning to a more global view is possible without breaking the workflow in a
simple click. The maximum detail with all parameters on the level of individual
neural networks is available in the tooltip of each data point and the tooltip of
the image related to the data point.

3.2 Overfitting Dashboard

The overfitting dashboard solves a specific question about overfitting a neural
network during its training phase. In the scatter plots we correlate a quality
score for the training and the test data. This quality score is the true positive
rate (TPR) minus the false positive rate (FPR). Good neural networks have a
TPR of 1 and a FPR of 0 for both the training and the test data and therefore
are located in the top right corner. Encoding a score like this enables us to show
more information and the score expresses the quality of a network better since
a high TPR can mean little if the FPR is high too.

We selected the data type, activation function and regularization rate to
provide different views on the same data space. According to our own research,
these features have a significant impact on overfitting a neural network. These
views, even though they look the same at a glance, are not logically connected.
This is recognizable by the different color palettes. It is simply a slice through
the data space with fixed x and y axis, but a different feature is highlighted in
each view. Brushing works between the views to enable filtering down the data
space. The bar chart to the right shows the learning rate distribution for the
selected data points.

3.3 Guided Mode

Since the topic of neural networks in general and this dataset specifically is fairly
complex and having a common understanding of the definitions is cruicial for
successful usage of our application, we provide a little tutorial with explanations
of important terms.

7

4 Implementation

4.1 Technologies used

NeuroVisualizer is implemented in Tableau and embedded in our project web-
site. We also use the Tableau API to read the currently selected data points
and show the respective images. These images then provide the most impor-
tant information in a tooltip also via the API. This feature was implemented in
Javascript without any other Javascript framework.

4.2 Implementation challenges

The most difficult implementation challenge was getting the images for each
neural network on demand depending on the selected data points. We could
not just ignore the images since they provide significant insights at the level
of individual neural networks in combination with the information provided by
NeuroVisualizer.

At first we tried to read the selected data points and the respective image
path from the DOM tree with Javascript which was impossible due to the fact
that tableau public doesnt create DOM objects for selected marks. After some
research we found out that there exists a scriptin API provided by Tableau
which allows to extract data and events from the dashboard and further process
them in Javascript as needed. This made arbitrary data manipulation from the
dashboard into the website much easier.

8

5 Results

5.1 Scenario of use - optimal parameters for spiral data
type

Figure 3: Good neural networks for data type ”spiral”

The figure above is filtered to the spiral classification problem and as can be
seen there are almost no very bad networks and a few very good ones. Good neu-
ral networks for the data type ”spiral” mostly use the Tanh activation function
followed by sigmoid. ReLU rarely resulted in good networks.

A higher learning rate is also favorable to a certain degree with a peak at
values 0.1 and 1. Interestingly, the highest value at 3 is much less often a good
choice for this data type. Two layers are the best choice followed by three layers.
Overall, ten to twenty neurons are ideal. Figure 3 shows the tooltip of a selected
point to have a look at the maximum detail of data available. Once points have
been selected in the DataPoint Map, the button ”show images” will become
active and by clicking on it, it will list all images from the training phase as
shown in Figure 4.

9

Figure 4: Tooltip of a selected data point of data type ”spiral”

Figure 5: Image of the training phase of a selected neural network

5.2 The Kernel Trick

While exploring the dataset with NeuroVisualizer we found about 15.000 neu-
ronal nets with zero neurons and zero layers. Our first and false delusion was
that we should clean the dataset from those nets. Further investigations re-
vealed the very interessting fact that some of those nets are highly efficent.

10

This was against our expectation and our previour knowlege about neuronal
nets. In order to solve problems like the XOR problem at least one hidden layer
is required 1. It turned out that this is not entirley true and can also be solved
by using the famous kernel trick. The kernel trick transforms the data into a
higher dimension and avoids the explicit mapping that is needed to get linear
learning algorithms to learn a nonlinear function or decision boundary 2. Neu-
ronal nets which leverage the kernel trick seems to work simmilar to networks
with one hidden layer.

5.2.1 Insights

In the following subsections we discuss our insights about the kernel trick. We
further investigated networks with zero neurons and zero layers and try to solve
the given problem in the respective problem space.

5.2.2 XOR

Ca be solved using the Kernel trick by using X2
1 , X2

2 and/or Sin(x1), Sin(x2)

5.2.3 Gaussian

Ca be solved using the Kernel trick by using X2
1 , X2

2 and/or Sin(x1), Sin(x2)

5.2.4 Circle

Ca be solved using the Kernel trick by using X2
1 , X2

2 and/or Sin(x1), Sin(x2)

5.2.5 Spiral

Cannot be solved using the Kernel trick.

5.3 Performance

NeuroVisualizer is bottlenecked by the amount of data. While the data file is
only 14 MB in size, it contains 100,000 records and the data transformations
necessary for the different views are fairly complex. On top of that there is
filtering which happens between the views.

The initial page load takes a few seconds and the response time of our
application is around 5 seconds which is acceptable for an expert system. The
resources for the project website are loaded asynchronously to speed up the
loading time. The general processing time of the data is not related to the
fact that our application is web based. The performance is the same if executed
locally in the Tableau software so there is nothing we could improve performance
using this technology.

1http://toritris.weebly.com/perceptron-5-xor-how--why-neurons-work-together.

html
2https://en.wikipedia.org/wiki/Kernel_method

11

http://toritris.weebly.com/perceptron-5-xor-how--why-neurons-work-together.html
http://toritris.weebly.com/perceptron-5-xor-how--why-neurons-work-together.html
https://en.wikipedia.org/wiki/Kernel_method

6 Discussion

6.1 Strengths

NeuroVisualizer is very easy to use and does not get lost in visual clutter or
unnecessary features. We use various visualization techniques to encode infor-
mation such as brushing, color encodings, position, filters and tooltips to convey
insights efficiently. The user interface focuses on a quick overview with many
zoom and filter options, but also the maximum detail on demand following
Shneiderman’s mantra. Since the implementation only requires a web browser,
our application is available and usable anywhere.

6.2 Weaknesses

The performance and response times are not optimal, but we carefully optimized
our application as much as possible with asynchronous loading of resources.
However, we found nothing else to improve the runtime behavior given the tools
chosen (Tableau and Javascript). An alternative implementation could have
been done in D3, but considering that the Urbana crime statistics assignment
was fairly slow with much less complex views, we were confident that a change of
programming tools would not have alleviated the performance issues especially
since running the Tableau workbook locally in the native client has a similar
performance as the embedded version.

We also looked at color perception for different kinds of color blindness.
Even though we carefully selected distinguishable colors in all kinds of scenar-
ios of color perception, there are still some minor improvements that could be
made especially in the overfitting dashboard with red-blindness (protanopia)
and monochromacy in general. In case of monochromacy, most color encodings
become unusable, but a color palette that is distinguisable in this case and also
visually pleasing for people without impaired color perception, is very difficult
to compose since in the overfitting dashboard there are more than one color
palettes.

6.3 Lessons Learned

An important lesson we learned was the significance of the concept and proto-
typing phase. Whatever you don’t account for in your prototype will cause more
and more problems the later you discover the issue in your project. Thorough
testing and questioning every approach over and over are cruicial to end up with
a working user interface that solves the challenge described in the use case. Also
the use case itself needs to be very well thought through and narrowed down.
There is no point in starting with the implementation if it is still unclear what
needs to be done exactly and why. That is, concept and prototype have priority
before anything else. Luckily, we decided to do our presentation for M2 and
got early enough feedback to completely re-do our prototype basically starting
from scratch. We better defined the use case and iteratively improved our ap-

12

plication in many group meetings where we re-fined our concept and challenged
each other’s ideas until we could not find improvements anymore and ended up
with the current design.

7 Task Separation

In both the concept (fine-tuning) and implementation phases every group mem-
ber worked on many topics all over the project scope which makes it hard to
itemize exact contributions per person.

• Literature research (1 paper per person): Everyone

• Implementation & Testing (Dashboards): Chris, Ernst

• Use case testing & Insights: Chris, Oliver

• Website programming: Oliver, Chris

• Tableau API programming: Oliver

• Report: Ernst

• Presentation: Everyone

8 References

• VIS lecture slides

• T. Munzner: Visualization Analysis & Design: Abstractions, Principles,
and Methods

• Sedlmair, Michael et al.: Visual Parameter Space Analysis: A Conceptual
Framework (link)

• Zeiler, Matthew and Fergus, Rob: Visualizing and Understanding Convo-
lutional Networks (link)

• https://github.com/hyounesy/cass2017_vis

• http://playground.tensorflow.org

• https://www.tensorflow.org/get_started/summaries_and_tensorboard

• http://visrseq.github.io/

13

http://cs.univie.ac.at/vda/publikationen/publikation/infpub/4162
https://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf
https://github.com/hyounesy/cass2017_vis
http://playground.tensorflow.org
https://www.tensorflow.org/get_started/summaries_and_tensorboard
http://visrseq.github.io/

	Motivation
	Related Work
	General Research
	VisRSeq
	Visual Parameter Space Analysis: A Conceptual Framework

	Approach
	Main Dashboard
	Overfitting Dashboard
	Guided Mode

	Implementation
	Technologies used
	Implementation challenges

	Results
	Scenario of use - optimal parameters for spiral data type
	The Kernel Trick
	Insights
	XOR
	Gaussian
	Circle
	Spiral

	Performance

	Discussion
	Strengths
	Weaknesses
	Lessons Learned

	Task Separation
	References

