
Visualization of the Optics Algorithm
Gregor Redinger*

01163940

Markus Hunner†

01503441

VIS 2017 - Universitt Wien

ABSTRACT

In our Project we have the goal to provide a visualization for the
OPTICS Clustering Algorithm. There hardly exist in-depth visual-
izations of this algorithm and we developed a online tool to fill this
gap. In this paper we will give you a deep insight in our solution.
In a first step we give an introduction to our visualization approach.
Then we will discuss related work and introduce the different parts
of our visualization. Then we discuss the software stack we used
for our application and which challenges and problems we encoun-
tered during the development. After this, we will look at concrete
use cases for our visualization, take a look at the performance and
present the results of a evaluation in form of a field study. At last we
will discuss the strengths and weaknesses of our approach and take
a closer look at the lessons we learned from our project.

Index Terms: Human-centered computing—Visualization—Visu-
alization techniques—TODO; Human-centered computing—Visual-
ization—Visualization design and evaluation methods

1 INTRODUCTION

We developed a visualization for the OPTICS Clustering Algorithm
(Ordering Points To Identify the Clustering Structure) [1]. This
algorithm calculates a distance for each point in the dataset and uses
this value to order the points in a meaningful way:

distε,MinPts =

{
UNDEFINED if |Nε (p)|< MinPts
MinPts-th smallest distance to Nε (p) otherwise

(1)

The OPTICS algorithm is a prime candidate for the use of vi-
sualization techniques as its output of a ordered object list can be
shown in a histogram-like plot (Reachability-Plot), that has to be
interpreted by the viewer. ”Valleys” in the plot represent clusters and
as OPTICS is a hierarchical clustering algorithm ”valleys” inside a
”valley” can be interpreted as subclusters.

Figure 1: A example of the OPTICS output arranged in a Reachability-
Plot in [1]

*e-mail: gregorredinger@gmail.com
†e-mail: hunnermarkus@gmail.com

Our Visualization not only helps in interpreting this Reachability-
Plot, but also provides the functionality of picking a cutoff value
for parameter ε, that we called ε’, with this cutoff it is possible to
interpret one result of the OPTICS algorithm like several results of
the related DBSCAN clustering algorithm. Thus our visualization
provides a parameter space exploration for all ε ′ < ε .

Users Therefore our visualization enables users without prior
knowledge of the OPTICS algorithm and its unusual result format
to easily interpret the ordered result structure as cluster assignments.
Additionally it allows the user to explore the parameter space of
the εparameter in an intuitive way, without the need to educate the
user on the algorithmic details of OPTICS and why introducing a
cutoff value for the calculated distance measures corresponds to the
DBSCAN clustering algorithm.

Data Our Prototype provides three predefined datasets with
the option to upload your own dataset in json format. The default
dataset is a mockup dataset used to visualize the advantages of
hierarchical clustering algorithms compared to non-hierarchical ones.
It features several cluster arrangements, which need an hierarchical
clustering solution to get right. With this dataset it’s easy to explain
how hierarchical clustering works and how the results have to be
interpreted. As this is a dataset specifically designed to show off
hierarchical clustering, it’s easy to achieve perfect results.

To demonstrate the benefits of our visualization approach in a
more realistic setting, we included two different 2D-Interpretations
of Fisher’s Iris flower data set [2]. The dataset features three clus-
ters corresponding to the species ”Iris setosa”, ”Iris virginica” and
”Iris versicolor”. While Iris setosa can be easily distinguished from
the two other species, the clusters of Iris virginica and Iris versi-
color are interwoven. This usually leads to results where those two
are interpreted as one big cluster. Although OPTICS is unable to
produce perfect or good results for this dataset, our visualization
approach allows a user to easily identify that the ”big” cluster holds
more information than the OPTICS result suggests. By interactively
exploring the parameter space for ε, the user is able to see that strict
interpretations of what a cluster should be, lead to a dense area in
the ”big” cluster. This dense area usually corresponds to Iris ver-
sicolor or Iris virginica. With enough patience it is even possible
to find a value ε’ in the parameter space, where both species can
be distinguished with the disadvantage of interpreting many points
as noise. While those clustering results are still far from perfect,
our visualization allows the user to assume that the result may be
unsatisfactory and even gives hints what subspace or subset of the
data should be examined with other categorization techniques.

2 RELATED WORK

Our Solution iterates on a proposed visualization of the output of the
OPTICS algorithm in [1] when the algorithm was introduced: The
Reachability-Plot (See 3.4). Using a cutoff ε’ to select certain clus-
tering assignments in the parameter space of ε- like we do - is also
mentioned in [1] and [5]. Combining and linking a representation
of the Reachability-Plot with a scatterplot can be seen implemented
in the video [4].

A case study of hierarchical clustering visualization can be found
in chapter 15.5 in [3]. While it discusses a much more advanced

approach using a different clustering algorithm, our prototype and
the discussed application share some similarities. For example it
also combines scatterplots, histograms and tables to show different
aspects of a clustering result.

3 APPROACH

3.1 Configuration

Figure 2: The config dashboard

We decided to split our application into two main sections. A
configuration section, where the user can adjust the algorithm values
and choose a dataset and a analyze section where the user can explore
the data. This approach seems useful, because it prevents the site
from getting to bloated with features and provides a clear interface
to our users, because there are less elements on the screen.

The configuration section allows the user to adjust the minPts
and epsilon values. We design the input field in a way, a user
can increment or decrement the values by one after every click.
So we tried to make it clear to the users, that it’s better to adjust
this parameters carefully and not to increment the epsilon value
for example from 2 to 3000 at once. After we get some feedback
from one of our professors, we also added a short explanation text
to these parameters. At first we believed it would be enough to
just write minPts and epsilon, because we would give every user
a short explanation what the optics algorithm is about, before they
use our application. After some test with colleagues we find out,
that even if they get a introduction, they often forget the meaning of
these parameters. So we implemented the text and during our final
evaluations we noticed, that it was significantly easier for our users
to understand the meaning of this parameters.

The configuration section also offers the option to upload a own
dataset or pick a predefined one. We offer an hierarchical cluster
and two versions of fishers iris dataset. We implemented a preview
slider, to give our users a hint about the structure and content of this
datasets. If the user click on one of the test-dataset buttons, the slider
shows up on the left side of the screen like in Figure 3.

After all parameters are set, the user must click on calculate to
start the calculation.

3.2 Table view
In the upper right corner we show the ordered list, which is the output
of the OPTICS algorithm. All visualizations we implemented are
based on this single ordered list of tuples (Point, Distance). See 6.3.2
Data Basis for a discussion of this constrain. In a second step our
implementation assigns colors to presumed clusters based on their

Figure 3: The test-dataset preview slidein

reachability distance. We visualized this color assignment with a
bar inside the table representing the reachability distance in relation
to εcolored accordingly. This bar provides a visual connection
to the Reachbility-Plot discussed in 3.4 Reachability-Plot As a
table is usually a textual representation of data, it is a suboptimal
visualization. Nevertheless we wanted to show the algorithm results
in way, that makes the connection between the input list of datapoints
and the ordered output list of datapoints obvious.

Figure 4: A first iteration for the table view

Figure 5: the table view now

3.3 Scatterplot

The scatterplot in the upper right of our prototype is a classical
2-dimensional representation of the input data. This form of visu-
alization is one of the most common used in implementations of
clustering algorithms and usually what users tend to expect, when
confronted with unsupervised learning algorithms. Although it isn’t
a visualization that represents a result output of OPTICS directly, we
decided to include it in our prototype as many potential users should

be familiar with it. If a user is unable to interpret the Reachability-
Plot, this view alone shows the clustering results by coloring the data
points in accordance with Reachability-Plot. Highlighting points
with the mouse courser highlights the corresponding point in the
Reachability-Plot. This can help in understanding the connection
between both visualizations.

Figure 6: The scatterplot

3.4 Reachability-Plot
The idea of a Reachability-Plot is a central aspect of the OPTICS
and was first mentioned in the corresponding paper [1]. The
Reachability-Plot is in alignment with the ordering calculated by the
algorithm. It provides a kind of birds-eye-view of the whole ordered
structure and can therefore be seen as another way of visualizing
the data our prototype already show via the table discussed in 3.2.
By examining such a Reachability-Plot for ”valleys” a user, familiar
with OPTICS, can derive assumptions about the hierarchical struc-
ture of clusters in the data. Our visualization simplifies this approach
by coloring the ”valleys” for a given ε.

Figure 7: our interpretation of a Reachability-Plot

While this makes it easy to see the clustering result for a certain
epsilon, it still doesn’t visualize the hierarchical structure of ”valleys”
inside ”valleys”. For this we provide an input slider with which the
user can explore the parameter space of εfor all ε ′ < ε . The coloring
of clusters is changed accordingly. These clustering results can
also be interpreted as the results of a run with the related clustering
algorithm DBSCAN for selected εas discussed in [1]. Thus this
input slider represents a form of local-to-global parameter space
exploration described in [6] - by exploring several local results
in one visualizations it is possible to derive a global structure of
clusters over all ε’.

Our goal was to create a form of scented widget as discussed in
[7]. Unfortunately technical complications (see 4.2.1) prohibited to
put the input slider directly on the y-axis of the Reachability-Plot,
which represents the distances. Therefore the slider is next to y-axis
with a colored line representing the chosen ε’-cutoff.

3.5 Range-Query
OPTICS uses so called range queries in the calculation of reach-
bility distances. The radius for those range queries is ε. If

Figure 8: the input slider with the purple line indicating the current
ε’-cutoff

there are at least minPts data points in this query the MinPts−
thsmallestdistancetoNε (p) is calculated otherwise the maximum
distance εis assigned. To show an estimate of those range queries a
data point can be highlighted in the scatter- or Reachability-Plot and
circle corresponding to the range query is shown around the point in
the scatterplot. This allows the user to check, if a point is regarded
as noise because it didn’t met the minPts-criteria.

Figure 9: an estimate of the range query shown in the scatterplot.

3.6 Tooltips and highlighting

We used tooltips to provide further information about some parts of
our application. Nearby each view in the analyze tab is a help button,
by hovering over this button a tooltip pops up, that shows information
on how to use the respective view. This is actually a feature we
implemented later, because in the first place, we believed it wouldn’t
be necessary. After we run a few evaluations, we realized that even
users that know the optics algorithm and other implementations of
it, struggled to find all of the features we implement. So we decided
to add this help buttons.

Another use case for the tooltips, was providing information
we did not have enough space in the views. In the histogram, we
haven’t enough space to show information about each datapoint, so
we decided to provide the respective information in a tooltip that
shows up, when a user hovers over that point.

We use highlighting because we show large amount of data in our
views and this makes it hard for a user to be sure which datapoint he
have selected. So we provide a visual feedback. In the histogram
view, we visualize this feedback with a color change to grey and in
the scatterplot view a selected point gets a darker color tone.

Figure 10: a tooltip providing the original index of the data point and
the calculated distance

4 IMPLEMENTATION

4.1 Used tools and languages
4.1.1 Javascript
We used javascript as our programming language. This was a good
choice because there are many libraries and tools for building web
applications in this language. A downside of this approach is, that
it’s sometimes hard to choose a good library for a given problem,
because there are so many of them and sometimes this libraries and
tools don’t play well together.

4.1.2 Webpack
We used a module bundler named webpack. So we were able to
structure our code in a clean way by modularize it. Webpack takes
care of stitching together all this modules (and their dependencies)
into a single file in the correct order. A problem we encountered
here, was the debugging of the bundled code, because the bundled
and compiled code is a bit hard to read. After we find out how to
use a source map (provides unbundled source code for debbuging) it
was a bit better, but still not very comfortable.

4.1.3 Babel
We used babel as a preprocessor for our js code. This allowed us
to use ES6 features(import/export, for of loops,...) and ensures that
our code run in older browser too. The problem of the usage of
babel in combination with webpack is that it caused a couple of
problems with d3. A more detailed explanation of the problems we
encountered follows in the next subsection.

4.1.4 npm
To manage our dependencies we used the node package manager.
This was a good choice because it’s much easier to manage all our
dependencies in one place. Npm also takes care of updating our
packages and warns us about deprecated packages.

4.1.5 JsDoc
To document our code we used jsdoc because it’s very similar to
javadoc, a tool we already gained a lot of experience with.

4.1.6 D3
Since D3 is the de-facto-standard for complex visualizations in
javascript, we decided to use it as our tool of choice.

4.1.7 Handsontable
For the table view we used the library Handsontable. With this
library it is possible to rendere html entities inside of table cells. We
used this feature incorporate the reachability bars into the table view.

4.1.8 node + express

On the server side we used node in combination with express as
server. This combination is very common and powerful for creating
api’s. The problem hereby is, that we actually don’t do anything on
the server side, except from starting the server and deliver our single
page application one time on page load. A simpler approach would
have been to just use the simply python server we used in A3. The
only benefit we gained from taking this approach, was the usage of
the powerful node package manager.

4.1.9 Jetbrains Webstorm

As IDE we used webstorm and it was a good choice, because it’s
especially designed for web development and very reliable and
powerful. However we encountered a downside here, because the
debugger don’t work well with chrome or any other browser we
tried. This makes the debugging of our javascript code not easy.

4.2 Challenges and Problems

4.2.1 d3 in combination with babel and webpack

We encountered an unresolved bug1 regarding the d3-library and the
usage of the javascript bundler webpack and the es6 to es5 compiler
babel.

The d3 documentation states: ”If you use Babel, Webpack, or
another ES6-to-ES5 bundler, be aware that the value of d3.event
changes during an event! An import of d3.event must be a live
binding, so you may need to configure the bundler to import from
D3s ES6 modules rather than from the generated UMD bundle; not
all bundlers observe jsnext:main. Also beware of conflicts with the
window.event global.”

The Problem hereby is, that Babel treats imports (like d3.event)
as values and not as live bindings. This makes it not possible to use
d3’s brushing when using a es6 to es5 compiler. Listener functions
called via an event will throw nullPointerExceptions, if the reference
to the d3.event was lost completly. In other cases the reference will
point to another event object on random leading to TypeErrors inside
the listeners.

First we take into consideration to forget about the use of webpack
and babel in our code, but this would force us to restructure our
project entirely. We decided that our project would benefit more, if
we invest our resources in improving other parts of our application
instead of restructuring huge parts of our application.

4.2.2 Dendrograms in d3

A dendrogram encodes clusters and there subclusters by visualizing
”split-values” (ε’), at which a big cluster splits into two or more
subclusters.

M2 featured several visualizations utilizing cluster dendrograms.
This type of visualization would be a perfect fit for our use case, as
it encodes the same information as the OPTICS-Reachability-Plot
in a completely different way. Therefore it would be easy to derive
the necessary data needed for a dendrogram from our reachability
results as discussed in [5].

Unfortunately there exist no easy way to generate those with
d3. The suggestion most often found, advises to use a visualization
similar to what we called Graph- or Tree-View in M2. Unfortunately
this means to lose the information encoded by the single axis of
a dendrogram, the ε-Axis. While a tree view still perserves the
information on cluster hierarchies, it is not possible to decide on a
possible ε-cutoff with this form of visualization. Additionally we
lose the possibility to link our ε’-Slider with the dendrogram. So
we decided that we drop the idea of implementing a dendogram and
focus our resources on other parts of the application.

1d3 Issue Tracker: https://github.com/d3/d3-brush/issues/9

Figure 11: An example of a simple dendrogram

5 RESULTS

5.1 Use Cases
5.1.1 Finding Customers with a high Income that lives in a

specific street
Frank, the owner of a local grocery store wants to offer his customers
the option of a 10 Minute delivery, to compete with Amazon Fresh,
that started recently in his city. Because a 10 minute delivery is not
possible in the whole city, he plan to restrict his offer to a specific
street. He also thinks that only people with a relatively high income
are willing to pay the delivery fee, so he want to limit his marketing
to these kind of people. Thankfully he had a list with the income
and the residence of all people of his city as json. The problem is
to evaluate the list by himself would take way too much time, so he
decided to use our application instead.

Figure 12: The analyze Dashboard

At first he imports his list Data in our application and adjust the
epsilon and minpts parameters. After analyzing the scatterplot (left
top), he quickly see that the customers with high income are in a
blue cluster in the top-right of the scatterplot. Now he searches in the
spreadsheet view (right-top) after all entries with the street, where
he plan to offer his delivery service. Because all clusters are colored
in the table view, he can complete his search in no time.

5.1.2 Offering tutoring classes
Mr Fisher is the principal of a high school and he plan to offer some
tutoring classes to his pupils, but because his budget is limited, he is
only able to build a limited number of that classes. So he decided
to only offer them in disciplines where many pupils have problems.
He had a list of his pupils and their grades and analyzes the list with
our Application.

He uploads the json file and click calculate. Then he switches to the
analyze tab. He doesn’t need help during this workflow, because the
concept ”first config then analyze” seems very natural and logical
to him. He adjust the epsilon value with the histogram view and
examine the clusters in the scatterplot. He decided to examine the
clusters even further and switch to the spreadsheet. The distance
column is colored in the cluster colors so he is able to find the list of
pupils, belonging to a specific cluster really fast.

Now he knows which pupils had problems in specific disciplines
and where he can offer tutoring classes with the highest efficiency.

5.2 System Performance
Or application is browser based and therefore the performance can-
not be compared to native os applications in c or c++. Especially
for large datasets our application won’t perform as well, as as native
solutions, but for mid-sized datasets our application will perform
quite well. A performance evaluation for a dataset containing 400
elements:

Figure 13: The image shows the system utilization from clicking the
calculate button to finishing the calculation and rendering. The yellow
color shows scripting and the violet color rendering tasks. (created
with chrome dev tools)

Figure 14: An image of the calculation and drawing time of the different
tasks. As expected the calculations of optics (scripting) consumes
much more time than rendering the data to the screen. (created with
chrome dev tools)

5.3 Evaluation
Our evaluation goal was to test our application in a realistic setting,
but it should also be possible to perform precise observations. So
we decided to use the methodology of a field experiment. Our
test group consists of seven people, all of them were students in
computer science. Since the topic of clustering algorithms, that we
covered in our application, is not as well known as other topics in
computer science, we decided to give the participants of our study a
short introduction. In this introduction we covered what clustering
algorithms are and their use cases. The participants were asked to
perform the following tasks:

• Configure the algorithm and start the calculation.

• Switch to the analyze dashboard.

• Explore the dashboard and tell us what you think that the views
might represent.

• Change the epsilon value in the histogram.

• Tell us why the colors are changing.

Thanks to our introduction to optics and the info-text nearby the
epsilon and minPts, the participants had no problems to adjust the
parameters and understand what they mean. A problem occurred
by choosing a test dataset. By clicking on one of the test dataset
buttons, a slider with information about the selected dataset pops up
on the left side of the screen. It was pointed out in the slider that the
dataset, the user clicked on, was selected. All off the participants
understand what the pop up shows, but five of them mentioned, that
it isn’t clear how to choose a dataset, because there is no sign on the
button itself, that the dataset was chosen. After asking the users if
they don’t read the text in the preview, which says the dataset was
chosen, three of them responded they don’t read the preview text
and two of them where not sure if it worked, because the button of
the selected dataset don’t change his appearance.

The next issue we encountered refers to another design problem.
After the user clicked on the calculate button, it is required to click
on the analyze tab to switch to the analyze dashboard. When the
participants finished the configuration and clicked on the calculate
button, we instruct them to switch to the analyze dashboard. All
of them responded, that they already click on the calculate button,
but the application seems not to be finished with loading the new
page. None of our users understands, that they had to click on
the tab analyze to switch to the other dashboard, they expected to
get redirected. This is actually obvious, but when we create the
application we design it that way and after doing this task a few
times, we don’t even think about the fact, that they might be a more
natural solution for this task, like getting redirected after clicking on
calculate.

The majority of the participants mentioned, that there seems to be
a connection throughout all the views, because of the same color
scheme in all views. Six of the participants understand without
further help that if elements have the same color, they belong to
the same cluster. All of the participants recognized, that there is a
linking between the elements they are hovering in the histogram and
the elements in the scatterplot. Two of the participants understands
that the circle that shows up by hovering in the scatterplot refers to
the value epsilon. The table showing the reachability distance as a
bar chart and the flower type of the fisher datasets was also quite
clear for most of the users.

The task of changing the epsilon value was also no problem for our
participants and except of one user, all of them understand that by
changing the epsilon value, the clusters are reevaluated. In summary,
we get a really positive feedback on our application. The participants
liked the clear structure and the various ways to explore the datasets.
The Evaluation provided us also with a lot of interesting ideas and
show us the two major weaknesses of our implementation. The first
of them is, that we forget to use standard feedback patterns in parts
of our Application. This refers to the dataset buttons that should
provide a visual feedback, which indicates that they were selected
by the user. It’s also very interesting that we totally omit the auto
redirection after clicking on the calculate button, but this shows how
important feedback is and how easy it is to overlook better interaction
approaches. The second major weakness of our application is a lack
of guidance. Especially in the analyze dashboard it would be a great
improvement to provide some sort of tutorial, that shows how to
interact with the views and which methods are available to explore
the data in more detail.

6 DISCUSSION

6.1 Strengths of our approach and implementation
Iteration on OPTICS Our visualization in a iteration on ideas

and concepts already connected with OPTICS. As can be seen in
1, the idea of connecting a scatterplot like view to the information
encoded in the Reachability-Plot was already present in the initial
publication of the algorithm. We iterated on the concept of the
Reachability-Plot by introducing color and interactive exploration.
This allows the users to interpret our visualization without prior
knowledge of [1].

Usability During the development of our application we in-
creased the usability continuously. Thanks to the participants of
our evaluation we get a lot of feedback and now, at the end of this
iterative process, our application provides a smooth user experience.
There is some potential for improvements, but under consideration
of our limited time resources for this task, we implement a lot of
features:

• We implement a preview of the selected dataset in the config
tab, so a user get more insight in the respective data.

• We implement tutorial buttons for each view, which provide
information about the respective view and what a user can do
there.

• We redesign our spreadsheet view entirely, to provide more
valuable information.

• We improve the readability of the axis

• We redesign our config tab

Open Development We put a link to our github repository as
well as a link to our project page in the header of our application. We
want to encourage our users to look at the theoretical background of
our implementation on our project page and examine and fork our
code on github. We focused on a detailed documentation and we
provide an even more detailed readme to make it as easy as possible
to work with our code.

6.2 Weaknesses
Parameter Space Exploration While our input slider for ε’

provides a form a parameter space exploration for εour visualization
does not include parameter space exploration for minPts. Possible
ideas to implement this could feature a side by side view of several
different Reachability-Plots. As those could feature a vastly different
ordering for the given input data, a form of mapping the same data
points to each other in all of those plots would be necessary.

Table view The table view visualizes nearly no insightful in-
formation, except the connection between the output of OPTICS
and the Reachability-Plot. As the table view provides a kind of
”zoomed in” view of the calculated results, a zoom and brushing
functionality for the Reachability-Plot could probably replace the
whole table view. Unfortunately technical difficulties prohibited the
implementation of such a feature (See 4.2.1)

Linking of visualizations Currently there exist no strong links
between our visualizations. The color assignments are present in
all visualizations. As is the possibility to highlight a point in the
scatterplot or the Reachability-Plot and see the corresponding data
point in both of those. Ideally it should be possible to come up
with a stronger connection between the Reachability-Plot and the
Scatterplot. For example some visualizations draw a line from a
”valley” in the Reachability-Plot to the corresponding cluster of
points in the scatterplot. For a very small number of clusters this can
still be interpreted, but doesn’t scale well. Further Iterations on the
concept should include a more interactive way to connect clusters in
both plots without the usage of static connection lines.

6.3 Lessons we learned

6.3.1 Choose the right tools

One of the most important things we learned from our project, is that
it is crucial to be not too biased to use a specific tool or handle things
in a specific way. One of our professors in the course described
this problematic point of view quite good: ”If your favorite tool is
a hammer, you tend to see every problem as a nail”. In our project
we used babel and webpack, because we already used them in other
projects and were familiar with them. We forgot to check if this
tools will work well for the problem we want to tackle. The thing
we learned here is to look at a problem and then choose a tool to
solve it and not the other way around.

6.3.2 Data basis

On several occasions we were advised against implementing OP-
TICS on our own and look for a already implemented solution to
use. As OPTICS seems to be a very exotic clustering algorithm
there hardly exist well written implementations that allow to access
interim results or execution data. And most of the implementations
in javascript seem to be student projects.

Many of our low-fi-prototypes relied on data not accessible by
the OPTICS implementation we used. Like the exact data point
traversal used during execution, which we wanted to visualize in
what we called a Net-Graph.

Other interim results like the range queries performed by the
algorithm for every point in the dataset could be easily saved during
the execution to use them for a visualization. As of now, we need to
”reengineer” the neighborhood query from the result output, which
leads to inaccurate estimates.

Another group which worked with the OPTICS algorithm imple-
mented their own version of the algorithm and were able to come up
with much more visualizations, as there data basis after running the
clustering algorithm consists of much more information than just an
ordered array of data points.

Data used in a run of the optics algorithm that is inaccessible to
us includes, the range queries and for which point it achieved to
reach minPts, the dataset traversal, and real clustering assignments.
All visualized clustering assignments are currently derived from
the ordered result list, as intended for human users by [1]. Storing
calculated cluster assignments would allow us to give a much more
consists visualization by enabling us to track a certain cluster through
the whole parameter space of ε.

There are only so much possible visualizations of an ordered
array. This leads to the conclusion that a proper data basis is crucial
for a good visualization. A point we realized far too late during the
implementation and should have been thought of already in the stage
of conceptualization and during the design of low-fidelity prototypes.
As of now many of our low-fi prototypes rely on data we are not
able to access in our high-fidelity prototype.

6.3.3 Leave well trodden paths

To choose the right visualization for a given problem is not an
easy task. There are many things to consider. Who will use our
application for what? What is the best way to show the data for the
required tasks? How can i provide the user a smooth user experience?
Confronted with so many decisions to make, we tend to look at the
things other people do, to handle similar problems. There is nothing
wrong with that, comparing our ideas with others can provide new
insights to a problem and can help us to enhance our own ideas. The
problem starts when we stop thinking about a problem by ourselves
and just copying the things other people do, because everybody says
this is the best approach. We believe it’s crucial to think beyond this,
to explore new ideas and even we fail a few times, we can learn from
that mistakes and get insights we didn’t have before.

7 SEPARATION OF TASKS

7.1 Markus Hunner
• Rework of table view

• literature research

• 50% of the Report

7.2 Gregor Redinger
• Design improvements in the config view

• Implementation of help buttons

• Dataset Preview

• Evaluations

• 50% of Report

REFERENCES

[1] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. Optics:
ordering points to identify the clustering structure. In ACM Sigmod
record, vol. 28, pp. 49–60. ACM, 1999.

[2] R. A. Fisher. The use of multiple measurements in taxonomic problems.
Annals of human genetics, 7(2):179–188, 1936.

[3] T. Munzner. Visualization analysis and design. CRC press, 2014.
[4] B. Özerdem. Optics clustering algorithm simulation. YouTube, Decem-

ber 2014.
[5] J. Sander, X. Qin, Z. Lu, N. Niu, and A. Kovarsky. Automatic extraction

of clusters from hierarchical clustering representations. Advances in
knowledge discovery and data mining, pp. 567–567, 2003.

[6] M. Sedlmair, C. Heinzl, S. Bruckner, H. Piringer, and T. Möller. Visual
parameter space analysis: A conceptual framework. IEEE Transactions
on Visualization and Computer Graphics, 20(12):2161–2170, 2014.

[7] W. Willett, J. Heer, and M. Agrawala. Scented widgets: Improving
navigation cues with embedded visualizations. IEEE Trans. Visualization
& Comp. Graphics (Proc. InfoVis), 13:1129–1136, 2007.

https://www.youtube.com/watch?v=8kJjgowewOs
https://www.youtube.com/watch?v=8kJjgowewOs
https://www.youtube.com/watch?v=8kJjgowewOs
https://www.youtube.com/watch?v=8kJjgowewOs
https://www.youtube.com/watch?v=8kJjgowewOs
http://vis.stanford.edu/papers/scented-widgets
http://vis.stanford.edu/papers/scented-widgets
http://vis.stanford.edu/papers/scented-widgets
http://vis.stanford.edu/papers/scented-widgets
http://vis.stanford.edu/papers/scented-widgets
http://vis.stanford.edu/papers/scented-widgets
http://vis.stanford.edu/papers/scented-widgets

	Introduction
	Related work
	Approach
	Configuration
	Table view
	Scatterplot
	Reachability-Plot
	Range-Query
	Tooltips and highlighting

	Implementation
	Used tools and languages
	Javascript
	Webpack
	Babel
	npm
	JsDoc
	D3
	Handsontable
	node + express
	Jetbrains Webstorm

	Challenges and Problems
	d3 in combination with babel and webpack
	Dendrograms in d3

	Results
	Use Cases
	Finding Customers with a high Income that lives in a specific street
	Offering tutoring classes

	System Performance
	Evaluation

	Discussion
	Strengths of our approach and implementation
	Weaknesses
	Lessons we learned
	Choose the right tools
	Data basis
	Leave well trodden paths

	Separation of Tasks
	Markus Hunner
	Gregor Redinger

