
Histogram Design
Pavares Charoenchaipiyakul

01468869
Milán Kolki

01301925
Lachezar Valkov

01308067

Figure 1: The final version of our tool.

ABSTRACT

Histograms are often used as a method to gain a quick overview of
a dataset. There are several parameters that come into play when
creating a histogram, and it’s often a problem to select the best
combination for our purposes. We propose a tool that provides the
user with a quick overview of these parameters, allowing them to
select the best histogram for their own purposes. We present a design
study of this tool, the progression of our prototypes, arriving to the
final version. The implementattion details are also discussed. We
describe a typical usage scenario, complete with a persona. We
discuss the strengths and the weaknesses of our tool, concluding
with the lessons we learned from this project.

Index Terms: Human-centered computing—Visualization—Visu-
alization systems and tools—; Human-centered computing—Visual-
ization—Visualization design and evaluation methods

1 INTRODUCTION

This paper was created for the University of Vienna’s VU Visual-
isation and Visual Data Analysis class, taught by Torsten Möller,
Thomas Torsney-Weir and Michael Sedlmair, in the winter semester
of 2017-18. We are Group 8.

2 MOTIVATION

According to the project description [2], “histograms are often used
as the first method to gain a quick overview over the statistical

distribution of a collection of values, such as the pixel intensities in
an image”. There are various parameters to consider, such as bin
width, aspect ratio, visual encoding, etc. All these parameters have
an influence on how the histogram is perceived. We decided to do a
design study project on an application that helps the user to create
the best histogram for their own purposes, where “best” is entirely
dependent on the user’s perspective. Taking this into consideration,
we hope it will be used to create a good representation of the data,
but if someone wants to intentionally create a skewed representation,
that is also possible.

3 RELATED WORK

Looking through the old projects listed on the course website, no one
has chosen this project topic before us. There are also no commercial
tools available for histogram design as far as we know, all there is are
some formulas to generate an optimal bin width with. We looked for
other inspiration, and so our high-fidelity prototype for Milestone
3 was inspired by a Windows utility (Fig. 2) for selecting the best
font rendering for your screen. The literature provided in the project
description was unfortunately very advanced and had almost nothing
to do with visualization (since the project was originally supposed
to be a bachelor’s thesis and was adapted for this class). Fortunately,
for Milestone 3 we received some additional literature which helped
with understanding what the essence of this class is and the mindset
we had to adapt for it. The Design Galleries paper [3], describing an
automated system aiding the user in selecting perceptually different
graphics and images, has influenced our final version significantly.



Figure 2: The ClearType utility to select the best font rendering on
Windows. [1]

Figure 3: Pavares’ low-fidelity prototype.

4 APPROACH

In the beginning, we considered an evaluation project on the visual
perception of histograms. At the time, we thought we had to follow
the project description fairly closely, so we thought of approaching
this by creating a tool that let us create all kinds of histograms, and
then running a user study on the perception of different histograms.
We discussed this idea with Tom, and he encouraged us to do a
design study instead, arguing that a study like this would take too
much effort. So we ended up scrapping the idea of an evaluation
project, and started working on a design study for a histogram design
tool.

Each of us created a low-fidelity prototype for an interface to
create histograms with. Pavares’ prototype (Fig. 3) was basically
a wizard allowing the user to set the properties for a histogram
sequentially, Lachezar’s prototype (Fig. 5) was a complicated design
with floating panes and additional graphs to help understand the
data better, and Milán’s was an interface where the user could input
the parameters and see the histogram in the middle change right
away based on these parameters. With the help of the feedback we
received for Milestone 2, we chose Milán’s prototype that lets the
user tweak the details of the histogram on a single screen (Fig. 4),
but we added sliders and scented widgets to make it a bit more
intuitive.

Figure 4: Milán’s low-fidelity prototype that we selected for implemen-
tation.

Figure 5: Lachezar’s low-fidelity prototype.

To incorporate further visualization techniques, and to allow the
user to get an idea of their decisions, we designed an interface we
dubbed “ClearType”, which was inspired by the Windows utility
mentioned earlier. This helped the user select the properties for the
histogram visually, through a logical sequence of the parameters,
seeing how the histogram would change with every step, starting
with selecting the visual encoding (bar/line chart), selecting the bin
width, the aspect ratio, and finally, the bar width(for bar graphs
only. (Fig. 6) Then, at the end, the user could reach a screen where
they could tweak the parameters some more, using sliders, scented
widgets and tooltips. (Fig. 7) From a visualization perspective,
however, this proved to be too linear. Prof. Möller said at the
Milestone 3 presentation that he imagined this “sea of histograms”
that he would be able to swim through, seeing all the possible
combinations of parameters at any given moment.

Unfortunately, we fell short of this goal. This comment about
“swimming” got stuck with us and we imagined a system that would
control the histogram with motion only. This wouldn’t be entirely
infeasible. We imagined a system, controlled with the WASD keys
and the arrow keys that would allow the user to “morph” a histogram
according to their will, being able to change the histogram type with
simple, intuitive motions. Drawbacks of this approach include the
user having to sort of memorize which key changes what, which



Figure 6: The step to select bar width in our high-fidelity prototype.

Figure 7: The screen to tweak the histogram in our high-fidelity proto-
type.

would take a bit of time for the process to be intuitive. Because (as far
as we know) no one has to create histograms for a living, this is bit of
an “overkill” approach. Considering this and other implementation
challenges such as morphing the histogram smoothly, we decided to
do something simpler.

We wanted to make the effect of changing multiple parameters
visible, so we made a two-dimensional, four-by-four grid. The initial
idea was to display 16 pre-defined histograms first(after uploading
the dataset), allowing the user to select one they want to start with.
However, Pavares argued that the user knows already if they’d like
a bar chart or a line graph, so we should get that choice out of the
way first and present them with other options only afterwards. So
by clicking to select the graph type, the user reaches the main view,
with the grid on the left and a detailed view of the histogram on the
right. Under the grid, the user can toggle the parameters the grid is
currently displaying. Above and to the left of the grid, the parameter
corresponding to the respective axis is indicated.

We retained the “tweak view” from Milestone 3, which provides a
way to tweak the parameters more accurately. It’s possible to access
this via the ‘Custom Mode’ button under the detailed view.

5 IMPLEMENTATION

• Language: Node.js with EMCA Script 2015 (ES6) [4]

• Main Development Tools: d3, d3-node, Express, jQuery, csv-
parse, handlebars, formidable

• HTML Framework: Bootstrap v4

The idea of the implementation is quite simple. We let the user
upload the dataset (as .CSV format) to the server, then the workflow
is separated into 2 parts; the server-side and the client-side, whose
duties are different.

5.1 Server Side
The server side of the application goes around Node.JS. As stated
above, we use Node.JS in form of ECMA Script 2015, which allows
the usage of node modules and class concept, however, the process
overall is in Restless API architectural pattern. To dive deeper in
further information, it is easier to clarify that the server side has 2
main functionalities; routing and static rendering.

Routing is simply to program and create the route paths of the
site. It is analogous to the map that shows which URLs lead to
which pages. This includes page flow that determines how the
actions in the web application are performed and in which order. To
implement this, we use Express module. The module is an open-
source framework under MIT license that allows web-server services,
including pathing and routing configurations. This is also how we
develop the GET and POST actions for our application in each page
to suit our needs.

The second functionality is the static rendering of the histograms.
We can render the SVG elements statically with the help of d3-node
module. The module functions similar to how the d3.js does. Hence,
the implementation of this part resembles the implementation of
the normal d3 in client-side JavaScript, except that there is no use
of JavaScript DOM in d3-node module. We use the module to
create strings of SVG tag identifying the histograms in question. By
sending these strings to the frontend, with the help of handlebars,
the SVG Tags in question are rendered to the outside world.

5.2 Client Side
The client side, on the other hand, doesnt involve such thing as
routing. It is purely about the frontend, about what and how it
will show on the screen. We use Bootstrap v4 to ease up the work
and provide tidy, systematic view. Bootstraps grid is used in this
implementation.

Another main section for the client-side implementation is the
dynamic rendering of the histograms. The reason is that the custom
mode grants the users the ability to modify their histograms in real
time. Hence, it is reasonable to use (client-side) d3.js for such
dynamic task, as it uses clients JavaScripts to manipulate the outlook
without messing with GET and POST methods. The script takes
variables, graphically set with HTML form elements, as parameters
for real-time rendition.

The process can be realized in this stage because client-side
JavaScript is able to operate the Document Object Model (DOM)
elements on the page. With this, the script learns the values of each
parameter on the page without submitting to the server, therefore,
it can generate a histogram based on those values and assign to the
specified ¡div¿. In this process, we also make use of the onclick and
onchange options. Thus, in the end, the histogram here should be
ready for fine adjustment by the users.

5.3 Challenges
We struggled with scaling down the svg images for the 4x4 view.
Sometimes the bar width ended up being too small and the bars just
disappeared. Fortunately we were able to solve this problem. This
solution has brought another problem with itself, the app could now
only run in Firefox and Microsoft Edge. This problem was also
fixed.

Our third team member, Lachezar Valkov, was tasked with imple-
menting the filter (focus-and context, see later) in the Custom Mode
(see prototype in Fig. 4). He failed to do this before the deadline.

6 RESULTS

6.1 Scenario of use
For our usage scenario we envisioned a persona:

• Name: Melanie Kastner



Figure 8: The screen to select the chart type in the final version.

• Residence: Vienna

• Age: 29

• Profession: Journalist

• Motto: If all is under control, you’re not going fast enough.

• Experiences:

– Lives with her fiancé

– Is rather overloaded with tasks at work

– Has little to no free time left to spare

– Work is her highest priority

– Desires to accomplish work goals faster, in order to be
able to better manage the time spent with family

• Scenario: Uses the Histogram Exploration Tool to gain deeper
insight into collected data, be able to process it with greater
efficiency and ultimately finish her articles faster.

• Goal: Find the most impactful histogram representation to use
in an article about youth smoking

We imagined a scenario of a journalist writing about youth smok-
ing. She’d like to have a histogram in her article, to show some
statistics. She opens up our tool to upload her dataset, ‘youth-
smoking.csv’. She wants a bar chart in her article, so she selects
that. (Fig. 8) She’d like a narrow histogram with wide bars so that
the slight differences between the bars are more visible. She se-
lects ‘Aspect Ratio’ and ‘Space:Bar Ratio’ at the bottom, so that
she has an overview of how these two parameters interact. (Fig. 9)
Finally, she selects the histogram that fits her needs best. (Fig. 1)
Here she has an opportunity to go to ‘Custom Mode’ which is the
histogram-tweaking interface we designed for Milestone 3 (Fig. 7).

6.2 Performance
6.2.1 Technical Performance
To discuss about technical performance, we mainly consider the
speed of execution and the stability of the application. First of
all, we would like to begin with the stability issue. Stability of
this application, as it is now, is fairly decent in the programming
point of view as we used defensive programming to some degree to
maintain and make sure that the application runs smoothly through.
The uni-directional routing of the website is designed to control the
flow of data not only so that the application is simple to use, but
also that the we gain all the data needed for histograms rendering
without failure. However, to some extent, the application cannot
maintain its composure, for example, if a too large scale of data
(which surpasses language or browser capacity) is loaded into the
program. Moreover, because the current version of the application
is still considered a (high-fidelity) prototype, it handles most of the
error by throwing exceptions. This means that the program still uses
the Garbage in, nothing out or Garbage in, error state out concept,

Figure 9: The screen to select the best histogram from a combination
of two parameters in the final version.

which compromises its robustness (but the robustness should be
more concerned in the deployed version).

Second point is about the speed of execution. In this aspect, we
do not intend to measure and show how fast the program could
render one histogram. Doing so would bring nothing as there are a
lot of variables to concern and this is not the focus of our project.
Nevertheless, we still need to mention that using Node.JS helps the
processing and rendering time to be faster and more consistent. Let
us consider the choices; d3.js with pure JavaScript and Node.JS.
With d3.js, the application would be a normal client-side web ap-
plication which uses clients resources and the performance would
be based on both hardware of the client and software of the client.
This is because pure JavaScript is executed by the software such
as web browser, hence the performance is limited, implying that
some of the users would take the problem that their hardware and
software suffer their experiences using the application. Node.JS, on
the other hand, does most calculations in the server-side and not
relying on the web browser. This guarantees speed of execution in
some certain degree that users with lower computer specification
also receive decent services.

Not only the speed, but the memory and networking issue is
also concerned and optimized by the choice of using Node. Pre-
rendering allows offloading data processing. Unlike using pure
JavaScript, Node allows us to put the input file into the server and
directly acquire it when needed. This promises faster reaching speed
and saves memory used in communication between server and hosts.
In normal d3.js, there are issue of large network overhead when the
program deals with large tables and the data is sent back and forth
in order to produce results. The issue is solved simply by direct
loading from the server itself as stated above. In conclusion, the
application seems to have a decent performance up to some points
but still leave a room for improvements.

6.2.2 Usage Performance

Usage performance or the quality of the program is somewhat am-
biguous. It is the quality of the application seen from the users point
of view. The application is still young and under development but it



is usable for tasks, and it shows potential in the use case we came
up with, therefore, the first and foremost quality contained in the
program is that it runs and works fine under normal circumstances.
Another usage quality worth mentioning is that the program is not
difficult to learn (by ones self and without instruction manual), as it
is partially step-wise and intuitive. The users are free to choose the
plain and simple ways by using presets, or to encounter the sea of
histograms (with some aid so that the users do not suffocate from too
much histograms at once), or to fine-tune the histogram themselves
making a custom-made histogram just from their tasks.

7 DISCUSSION

7.1 Strengths and weaknesses
Our tool is intuitive, easy and quick to use, and has a light backend.
It provides the user with the advantage of being able to see the effect
of different parameters at once. Unfortunately, we only have two
dimensions, so this is kind of limited. It would theoretically be
possible to use three dimensions, or a hierarchy (like in the Design
Galleries paper [3]) of different parameters. It is also limited to a
handful of parameters, although that doesn’t diminish the merits of
our design. There’s also the challenge of how it handles different
kinds of data, because the presets aren’t suitable for datasets with
too many or too few values.

7.1.1 Possible improvements
There are a couple of things that we couldn’t implement in the
timeframe of this class. The first is a different graph, right under
the detailed histogram view (visible in our low-fidelity prototype,
Fig. 4) which could be used to restrict the data and filter low and
high values from the histogram. This would constitute an example
of focus-and-context. This was supposed to be done by Lachezar,
but he didn’t contact us before the deadline, so this functionality is
missing. Another improvement could be to upload multiple datasets
and change between them “on the fly”, showing how a certain set of
parameters affects different datasets.

The set of available parameters to change could also be expanded,
for example, the tick marks, the bar shapes [5], etc. However, this
could cause some confusion with the toggle buttons, so maybe some
icons are necessary to make it more intuitive.

7.2 Lessons learned
The most important lesson we learned from this class was that it’s the
idea that matters. No matter how nicely implemented a tool is, if the
theory behind it isn’t solid, it’s useless. One shouldn’t underestimate
the effort needed for this class, however, you still have to have the
skills to implement your tool, that’s just not the point. It’s also very
important to plan ahead and carefully weigh what you can achieve
within the short timeframe granted to you. Overall, what you get
from this class is directly proportional to the effort you put in it.

Somehow we didn’t understand in the beginning what the goal of
this class is, and that it was possible to do whatever we wanted, as
long as it had to do something with visualization. Unfortunately this
meant that we thought we needed to follow the project description
to the letter, which was a fundamental mistake. If I (Milán) had to
choose a project again, I’d make sure to choose something that lets
me be more creative. Also, our team assembled quite late, and we
had to make a decision very quickly, and so we chose the project
which had the most exact description of what was to be done. We
couldn’t have made a bigger mistake.

8 TASK SEPARATION

• Charoenchaipiyakul: Design, backend, frontend, Implemen-
tation and Performance sections of the report

• Kolki: Design, frontend(Custom Mode), rest of the report

• Valkov: Persona

REFERENCES

[1] Cleartype utility. https://www.

tenforums.com/attachments/tutorials/

127344d1490910327-turn-off-cleartype-windows-10-a-clearttype-6.

png. Accessed: 2018-01-21.
[2] B. Fröhler. Histogram design. project description. https://

docs.google.com/document/d/1TWCuuauLR3Ok41cl1AGY0MQh_

R9trTsGyMR5SNCS-Ok/edit?usp%3Dsharing. Accessed: 2018-01-
21.

[3] J. Marks, B. Andalman, P. A. Beardsley, W. Freeman, S. Gibson, J. Hod-
gins, T. Kang, B. Mirtich, H. Pfister, W. Ruml, et al. Design galleries:
A general approach to setting parameters for computer graphics and
animation. In Proceedings of the 24th annual conference on Computer
graphics and interactive techniques, pp. 389–400. ACM Press/Addison-
Wesley Publishing Co., 1997.

[4] R. Sanchez. Comparing node.js vs php perfor-
mance. http://www.hostingadvice.com/blog/

comparing-node-js-vs-php-performance/. Accessed: 2018-01-
21.

[5] D. Skau, L. Harrison, and R. Kosara. An evaluation of the impact of
visual embellishments in bar charts. In Computer Graphics Forum,
vol. 34, pp. 221–230. Wiley Online Library, 2015.

https://www.tenforums.com/attachments/tutorials/127344d1490910327-turn-off-cleartype-windows-10-a-clearttype-6.png
https://www.tenforums.com/attachments/tutorials/127344d1490910327-turn-off-cleartype-windows-10-a-clearttype-6.png
https://www.tenforums.com/attachments/tutorials/127344d1490910327-turn-off-cleartype-windows-10-a-clearttype-6.png
https://www.tenforums.com/attachments/tutorials/127344d1490910327-turn-off-cleartype-windows-10-a-clearttype-6.png
https://docs.google.com/document/d/1TWCuuauLR3Ok41cl1AGY0MQh_R9trTsGyMR5SNCS-Ok/edit?usp%3Dsharing
https://docs.google.com/document/d/1TWCuuauLR3Ok41cl1AGY0MQh_R9trTsGyMR5SNCS-Ok/edit?usp%3Dsharing
https://docs.google.com/document/d/1TWCuuauLR3Ok41cl1AGY0MQh_R9trTsGyMR5SNCS-Ok/edit?usp%3Dsharing
http://www.hostingadvice.com/blog/comparing-node-js-vs-php-performance/
http://www.hostingadvice.com/blog/comparing-node-js-vs-php-performance/

	Introduction
	Motivation
	Related Work
	Approach
	Implementation
	Server Side
	Client Side
	Challenges

	Results
	Scenario of use
	Performance
	Technical Performance
	Usage Performance


	Discussion
	Strengths and weaknesses
	Possible improvements

	Lessons learned

	Task Separation

